Rayleigh Instability and Surfactant-Mediated Stabilization of Ultrathin Gold Nanorods

Ultrathin gold nanorods (AuUNRs; diameter ∼2 nm) stabilized by oleylamine (OA) were spheroidized when dispersed in chloroform containing a small amount of OA. Time-resolved optical spectroscopy and TEM analysis indicated that the AuUNRs were gradually shortened with the release of small Au nanospheres (AuNSs) because of Rayleigh instability, followed by transformation into plasmonic AuNSs (diameter >2 nm). The OA surfactants play an essential role in stabilizing the morphology of AuUNRs by suppressing the diffusion of Au surface atoms.

[1]  L. Lacroix,et al.  Ultrathin Gold Nanowires: Soft-Templating versus Liquid Phase Synthesis, a Quantitative Study , 2015 .

[2]  Hannu Häkkinen,et al.  A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters. , 2015, Journal of the American Chemical Society.

[3]  L. Lacroix,et al.  Dynamic HAADF-STEM observation of a single-atom chain as the transient state of gold ultrathin nanowire breakdown. , 2014, Journal of the American Chemical Society.

[4]  T. Saha‐Dasgupta,et al.  In-silico investigation of Rayleigh instability in ultra-thin copper nanowire in premelting regime , 2014 .

[5]  K. Koyasu,et al.  Surface plasmon resonance in gold ultrathin nanorods and nanowires. , 2014, Journal of the American Chemical Society.

[6]  L. Lehtovaara,et al.  A DFT Study of Linear Gold-Thiolate Superclusters Absorbing in the Therapeutic NIR Window. , 2014, The journal of physical chemistry letters.

[7]  Vicki J. Keast,et al.  TDDFT Study of the Optical Absorption Spectra of Bare Gold Clusters , 2014 .

[8]  Hans-Christian Weissker,et al.  Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods--an ab initio TDDFT study. , 2014, Physical chemistry chemical physics : PCCP.

[9]  Remco W. A. Havenith,et al.  Gold Nanowires: A Time-Dependent Density Functional Assessment of Plasmonic Behavior , 2013 .

[10]  Jintao Zhu,et al.  Ultralong gold nanoparticle/block copolymer hybrid cylindrical micelles: a strategy combining surface templated self-assembly and Rayleigh instability. , 2013, Nanoscale.

[11]  C. Aikens,et al.  Diameter Dependence of the Excitation Spectra of Silver and Gold Nanorods , 2013 .

[12]  Steven G. Johnson,et al.  Structured spheres generated by an in-fibre fluid instability , 2012, Nature.

[13]  M. Probst,et al.  Thermal stabilization of thin gold nanowires by surfactant-coating: a molecular dynamics study. , 2011, Nanoscale.

[14]  Jianhui Yang,et al.  Oxidation of benzylic compounds by gold nanowires at 1 atm O2. , 2011, Chemical communications.

[15]  M. Grzelczak,et al.  Binary self-assembly of gold nanowires with nanospheres and nanorods. , 2010, Angewandte Chemie.

[16]  C. Murray,et al.  Size- and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. , 2010, Angewandte Chemie.

[17]  Younan Xia,et al.  AuI: an alternative and potentially better precursor than AuIII for the synthesis of Au nanostructures , 2010 .

[18]  Zexiang Shen,et al.  Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. , 2009, Chemical communications.

[19]  L. Cademartiri,et al.  Ultrathin Nanowires—A Materials Chemistry Perspective , 2009 .

[20]  Naomi J Halas,et al.  Nanoshell-enabled photothermal cancer therapy: impending clinical impact. , 2008, Accounts of chemical research.

[21]  Mato Knez,et al.  General assembly method for linear metal nanoparticle chains embedded in nanotubes. , 2008, Nano letters.

[22]  Luis M Liz-Marzán,et al.  Shape control in gold nanoparticle synthesis. , 2008, Chemical Society reviews.

[23]  L. Liz‐Marzán,et al.  Synthesis of flexible, ultrathin gold nanowires in organic media. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[24]  Younan Xia,et al.  Gold nanocages: synthesis, properties, and applications. , 2008, Accounts of chemical research.

[25]  Younan Xia,et al.  Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. , 2008, Journal of the American Chemical Society.

[26]  Charles M Lieber,et al.  Ultrathin Au nanowires and their transport properties. , 2008, Journal of the American Chemical Society.

[27]  Xiaofeng Zhang,et al.  Sub-two nanometer single crystal Au nanowires. , 2008, Nano letters.

[28]  Prashant K. Jain,et al.  Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.

[29]  N. Ravishankar,et al.  Ultrafine Single‐Crystalline Gold Nanowire Arrays by Oriented Attachment , 2007 .

[30]  M. Toimil-Molares,et al.  Morphological evolution of Au nanowires controlled by Rayleigh instability , 2006 .

[31]  Younan Xia,et al.  Gold nanostructures: engineering their plasmonic properties for biomedical applications. , 2006, Chemical Society reviews.

[32]  C. Trautmann,et al.  Fragmentation of nanowires driven by Rayleigh instability , 2004 .

[33]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[34]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[35]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[36]  L. Rayleigh On The Instability Of Jets , 1878 .