Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys

Abstract In this paper, Co2MoxNi2VWx (x = 0.5, 0.6, 0.8, 1.0, 1.5, and 1.75 in molar ratio) eutectic high entropy alloys (EHEAs) were designed to achieve a combination of strength and ductility. The effects of Mo and W elements on the microstructures and mechanical properties of the alloys were investigated, and results showed that by decreasing the Mo and W contents to 0.8 in Co2MoxNi2VWx alloy, a fully eutectic microstructure was obtained. By increasing the Mo and W contents to 1.75, a primary BCC solid solution phase plus eutectic microstructure were obtained. The eutectic microstructure consisted of a mixture of FCC solid solution phase and μ phase. The Co2Mo0·8Ni2VW0.8 alloy with the largest volume fraction of eutectic microstructure exhibited the highest compression strength of 2364 MPa, while the Co2Mo1·75Ni2VW1.75 alloy with the largest volume fraction of BCC phase exhibited the highest yield strength of 1607 MPa.

[1]  J. Yeh,et al.  Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys , 2010 .

[2]  Tongmin Wang,et al.  A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties , 2016 .

[3]  U. Kattner,et al.  Experimental Determination and Thermodynamic Assessment of Phase Equilibria in the Co­Mo System , 2012 .

[4]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[5]  R. Banerjee,et al.  A new class of high strength high temperature Cobalt based gamma-gamma ` Co-Mo-Al alloys stabilized with Ta addition , 2015 .

[6]  Yiping Lu,et al.  Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys , 2014 .

[7]  Shengmin Guo,et al.  Senary refractory high entropy alloy MoNbTaTiVW , 2015 .

[8]  Qiang Wang,et al.  Designing eutectic high entropy alloys of CoCrFeNiNbx , 2016 .

[9]  K. Hiraga,et al.  Intermetallic Compounds of the μ- and P-phases of Co 7 Mo 6 Studied by 1 MV Electron Microscopy , 1983 .

[10]  Jingjie Guo,et al.  Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy , 2015 .

[11]  Nikita Stepanov,et al.  An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility , 2015 .

[12]  Sheng Guo,et al.  Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys , 2013 .

[13]  Nikita Stepanov,et al.  Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys , 2015 .

[14]  Xi Chen,et al.  Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys , 2015 .

[15]  Ł. Rogal,et al.  Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy , 2016 .

[16]  Tongmin Wang,et al.  Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys , 2015 .

[17]  Ning Wang,et al.  Rapid eutectic growth under containerless condition , 2002 .

[18]  G. Frommeyer,et al.  Constitutional and microstructural investigation of the pseudobinary NiAl–W system , 2011 .

[19]  Albert V. Davydov,et al.  Revised thermodynamic description for the Co-Mo system , 2003 .

[20]  E. Axinte,et al.  Microstructure, mechanical properties and corrosion resistance of CuZrY/Al, Ti, Hf series high-entropy alloys , 2016 .

[21]  Yunhao Huang,et al.  Atomic-size effect and solid solubility of multicomponent alloys , 2015 .

[22]  Zushu Hu,et al.  Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys , 2010 .

[23]  Yehui Zhang,et al.  The Phase Competition and Stability of High-Entropy Alloys , 2014 .

[24]  C. D. Lundin,et al.  Fatigue behavior of a wrought Al 0.5 CoCrCuFeNi two-phase high-entropy alloy , 2015 .

[25]  Feng He,et al.  Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures , 2016 .

[26]  Huijun Kang,et al.  A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys , 2014, Scientific Reports.

[27]  P. Liaw,et al.  Solid‐Solution Phase Formation Rules for Multi‐component Alloys , 2008 .

[28]  Tingju Li,et al.  Microstructure and Mechanical Properties of a CoFeNi2V0.5Nb0.75 Eutectic High Entropy Alloy in As-cast and Heat-treated Conditions , 2016 .

[29]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[30]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[31]  Yong Zhang,et al.  Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy , 2012 .

[32]  K. An,et al.  A precipitation-hardened high-entropy alloy with outstanding tensile properties , 2016 .

[33]  R. S. Kottada,et al.  Hot deformation behaviour and processing map of Co-Cu-Fe-Ni-Ti eutectic high entropy alloy , 2016 .

[34]  John J. Lewandowski,et al.  Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys , 2015, JOM.

[35]  C. Liu,et al.  Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys , 2011 .

[36]  Z. Jagličić,et al.  Discovery of a superconducting high-entropy alloy. , 2014, Physical review letters.

[37]  Yong Zhang,et al.  Prediction of high-entropy stabilized solid-solution in multi-component alloys , 2012 .

[38]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[39]  Robert O. Ritchie,et al.  Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi , 2015, Nature Communications.

[40]  E. Holmström,et al.  Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys , 2016 .

[41]  Yiping Lu,et al.  Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys , 2013 .

[42]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .