Detecting Bifurcations in Voice Signals

This chapter is concerned with the detection of bifurcations in voice signals applying several techniques of sliding signal analysis — conventional ones as well as novel methods originating from nonlinear dynamics. The signals come from several models (two-mass and continuum) as well as from an excised larynx experiment and vocalizations of patients with voice disorders. The results of the different techniques were found to be consistent and complementary to each other.

[1]  J. Flanagan,et al.  Synthesis of voiced sounds from a two-mass model of the vocal cords , 1972 .

[2]  B. Pompe,et al.  Transinformation of Chaotic Systems , 1986 .

[3]  D. Berry,et al.  Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions. , 1994, The Journal of the Acoustical Society of America.

[4]  Erik Mosekilde,et al.  Complexity, chaos, and biological evolution , 1992 .

[5]  D. Berry,et al.  Analysis of vocal disorders with methods from nonlinear dynamics. , 1994, Journal of speech and hearing research.

[6]  I. Titze,et al.  A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation. , 1979, The Journal of the Acoustical Society of America.

[7]  Ingo Titze,et al.  Nonlinear dynamics of the voice: Signal analysis and biomechanical modeling. , 1995, Chaos.

[8]  Hanspeter Herzel,et al.  Evidence of chaos in phonatory samples , 1991, EUROSPEECH.

[9]  van Rr René Hassel,et al.  Theoretical and experimental study of quasisteady‐flow separation within the glottis during phonation. Application to a modified two‐mass model , 1994 .

[10]  Nils I. Jaeger,et al.  Periodic perturbation of a drifting heterogeneous catalytic system , 1993 .

[11]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[12]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[13]  J. Kurths,et al.  An attractor in a solar time series , 1987 .

[14]  Hanspeter Herzel,et al.  Bifurcations and Chaos in Voice Signals , 1993 .

[15]  Hanspeter Herzel,et al.  Bifurcations and chaos in newborn infant cries , 1990 .

[16]  I. Grosse,et al.  MEASURING CORRELATIONS IN SYMBOL SEQUENCES , 1995 .

[17]  J Kreiman,et al.  Laryngeal paralyses: theoretical considerations and effects on laryngeal vibration. , 1992, Journal of speech and hearing research.

[18]  H. Herzel,et al.  Bifurcations in an asymmetric vocal-fold model. , 1995, The Journal of the Acoustical Society of America.

[19]  D. Berry,et al.  Bifurcations in excised larynx experiments , 1996 .

[20]  Herzel,et al.  Injection-induced bifurcations of transverse spatiotemporal patterns in semiconductor laser arrays. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  L. Dolansky,et al.  On certain irregularities of voiced-speech waveforms , 1968 .

[22]  Joachim Holzfuss,et al.  Approach to error-estimation in the application of dimension algorithms , 1986 .

[23]  Ingo R. Titze,et al.  Combined simulation of two‐dimensional airflow and vocal‐fold vibration , 1997 .

[24]  M. Hirano Objective evaluation of the human voice: clinical aspects. , 1989, Folia phoniatrica.

[25]  I R Titze,et al.  The Human Vocal Cords: A Mathematical Model , 1973, Phonetica.

[26]  Nonuniform Chaotic Dynamics and Effects of Noise in Biochemical Systems , 1987 .

[27]  Thomas Elbert,et al.  A PRACTICAL METHOD FOR THE MEASUREMENTS OF THE CHAOTICITY OF ELECTRIC AND MAGNETIC BRAIN ACTIVITY , 1995 .

[28]  J. V. D. Berg Myoelastic-aerodynamic theory of voice production. , 1958 .

[29]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[30]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[31]  Gottfried Mayer-Kress,et al.  Dimensions and Entropies in Chaotic Systems , 1986 .

[32]  Thomas Baer,et al.  INVESTIGATION OF THE PHONATORY MECHANISM , 1981 .

[33]  Hanspeter Herzel,et al.  Effects of noise on a nonuniform chaotic map , 1987 .

[34]  Johan Sundberg,et al.  Acoustic and perceptual analysis of vocal dysfunction , 1986 .

[35]  W. Lauterborn,et al.  Subharmonic Route to Chaos Observed in Acoustics , 1981 .

[36]  W. Ebeling,et al.  Finite sample effects in sequence analysis , 1994 .

[37]  A W Kelman,et al.  Vibratory pattern of the vocal folds. , 1981, Folia phoniatrica.

[38]  B. Pompe Measuring statistical dependences in a time series , 1993 .

[39]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[40]  I. Titze Vocal fold physiology : frontiers in basic science , 1993 .

[41]  P. Landa Nonlinear Oscillations and Waves in Dynamical Systems , 1996 .

[42]  Hanspeter Herzel,et al.  CHAOS AND BIFURCATIONS DURING VOICED SPEECH , 1991 .

[43]  A. Huxley Themes And Variations , 1950 .

[44]  Hanspeter Herzel,et al.  Bifurcations in a vocal fold model , 1995, Nonlinear Dynamics.

[45]  K. Ishizaka,et al.  Computer simulation of pathological vocal‐cord vibration , 1975 .

[46]  Markus Hess,et al.  Hochgeschwindigkeitsaufnahmen von Schwingungsmoden der Stimmlippen , 1994 .

[47]  Gunnar Fant,et al.  Acoustic Theory Of Speech Production , 1960 .

[48]  Rodney C. Wolff,et al.  Local Lyapunov Exponents: Looking Closely at Chaos , 1992 .

[49]  I. Titze,et al.  Elastic models of vocal fold tissues. , 1991, The Journal of the Acoustical Society of America.

[50]  Werner Ebeling,et al.  The decay of correlations in chaotic maps , 1985 .

[51]  Werner Lauterborn,et al.  Evidence for a low-dimensional strange attractor in acoustic turbulence , 1986 .

[52]  Ronald C. Scherer Physiology of creaky voice and vocal fry , 1989 .

[53]  U. Parlitz,et al.  Lyapunov exponents from time series , 1991 .