A viscous paint model for interactive applications

We present a viscous paint model for use in an interactive painting system based on the well-known Stokes’ equations for viscous flow. Our method is, to our knowledge, the first unconditionally stable numerical method that treats viscous fluid with a free surface boundary. We have also developed a real-time implementation of the Kubelka-Munk reflectance model for pigment mixing, compositing and rendering entirely on graphics hardware, using programmable fragment shading capabilities. We have integrated our paint model with a prototype painting system, which demonstrates the model’s effectiveness in rendering viscous paint and capturing a thick, impasto-like style of painting. Several users have tested our prototype system and were able to start creating original art work in an intuitive manner not possible with the existing techniques in commercial systems.

[1]  Arie E. Kaufman,et al.  Melting and flowing of viscous volumes , 2003, Proceedings 11th IEEE International Workshop on Program Comprehension.

[2]  David England,et al.  Modelling the Texture of Paint , 1992, Comput. Graph. Forum.

[3]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[4]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[5]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[6]  C. W. Hirt,et al.  Improved free surface boundary conditions for numerical incompressible-flow calculations , 1971 .

[7]  Michael Griebel,et al.  Numerical Simulation in Fluid Dynamics: A Practical Introduction , 1997 .

[8]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[9]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[10]  Jessica K. Hodgins,et al.  Dynamic simulation of splashing fluids , 1995, Proceedings Computer Animation'95.

[11]  Alvy Ray Smith,et al.  PAINT , 1998, Herz Kardiovaskuläre Erkrankungen.

[12]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[13]  Jim X. Chen,et al.  Toward Interactive-Rate Simulation of Fluids with Moving Obstacles Using Navier-Stokes Equations , 1995, CVGIP Graph. Model. Image Process..

[14]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[15]  Gene H. Golub,et al.  Matrix computations , 1983 .

[16]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[17]  P. Kubelka,et al.  New contributions to the optics of intensely light-scattering materials. , 1954, Journal of the Optical Society of America.

[18]  Gary W. Meyer,et al.  Modeling pigmented materials for realistic image synthesis , 1992, TOGS.

[19]  David Salesin,et al.  Computer-generated watercolor , 1997, SIGGRAPH.

[20]  P. Kubelka,et al.  Errata: New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[21]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[22]  Pat Hanrahan,et al.  Modeling and rendering of metallic patinas , 1996, SIGGRAPH.

[23]  P. Kubelka Ein Beitrag zur Optik der Farban striche , 1931 .

[24]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[25]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[26]  C. W. Hirt,et al.  Free-surface stress conditions for incompressible-flow calculations☆ , 1968 .