A virtual element method with arbitrary regularity
暂无分享,去创建一个
[1] D. W. Scharpf,et al. The TUBA Family of Plate Elements for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).
[2] K. Bell. A refined triangular plate bending finite element , 1969 .
[3] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[4] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[5] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[6] T. Belytschko,et al. Element‐free Galerkin methods , 1994 .
[7] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[8] Miguel Ángel Martínez,et al. Overview and recent advances in natural neighbour galerkin methods , 2003 .
[9] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[10] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[11] F. Brezzi,et al. A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .
[12] N. Sukumar,et al. Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .
[13] Lourenço Beirão da Veiga,et al. A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.
[14] Gianmarco Manzini,et al. Flux reconstruction and solution post-processing in mimetic finite difference methods , 2008 .
[15] Gianmarco Manzini,et al. An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .
[16] Annalisa Buffa,et al. Mimetic finite differences for elliptic problems , 2009 .
[17] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[18] Gianmarco Manzini,et al. Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..
[19] Gianmarco Manzini,et al. Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..
[20] Gianmarco Manzini,et al. Convergence analysis of the high-order mimetic finite difference method , 2009, Numerische Mathematik.
[21] L. B. D. Veiga,et al. A Mimetic discretization method for linear elasticity , 2010 .
[22] T. Belytschko,et al. A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .
[23] T. Belytschko,et al. The extended/generalized finite element method: An overview of the method and its applications , 2010 .
[24] Gianmarco Manzini,et al. Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems , 2011, J. Comput. Phys..
[25] N. Sukumar,et al. Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .
[26] Gianmarco Manzini,et al. Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes , 2011, SIAM J. Numer. Anal..
[27] E. Wachspress,et al. A Rational Finite Element Basis , 1975 .
[28] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[29] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[30] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..