The Elite Optimality Procedure for Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithms (MOEAs) are likely used to identify non-dominated solutions or Pareto front (the known Pareto front) in multi-objective optimization problems. The quality of Pareto front depends on evolution strategies that are evaluated under performance metrics of generational distance, spacing, and error ratio. In this paper, a procedure of Elite optimality is proposed to transform the known Pareto front (PFknown) into the true Pareto front (PFtrue). The Elite optimality procedure improves the quality of the Pareto fronts that deals with the biggest challenge in the multi-objective evolutionary algorithms.

[1]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[2]  Jared L. Cohon,et al.  Multiobjective programming and planning , 2004 .

[3]  Voratas Kachitvichyanukul,et al.  Mutation strategies toward Pareto front for multi-objective differential evolution algorithm , 2014 .

[4]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[5]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[6]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[7]  Ralph E. Steuer Multiple criteria optimization , 1986 .

[8]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[9]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[10]  Jian-Bo Yang,et al.  Minimax reference point approach and its application for multiobjective optimisation , 2000, Eur. J. Oper. Res..

[11]  Daniel Angus,et al.  Multiple objective ant colony optimisation , 2009, Swarm Intelligence.

[12]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[13]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[14]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[15]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .