Symmetric Upwind Scheme for Discrete Weighted Total Variation

This paper is devoted to the study of the discrete formulations of the weighted Total Variation (TV) based on upwind schemes that have been proposed for imaging problems in a local setting in [1] and in a non-local setting for graphs and point-clouds in [2]. We focus on two new symmetric formulations based on the $\ell^{2}$ and $\ell^{\infty}$ norms respectively and propose a dedicated optimization algorithm to solve convex problems based on such TV penalties. We demonstrate the theoretical and practical interest of such formulations for image processing tasks.

[1]  Laurent Condat,et al.  A Fast Projection onto the Simplex and the l 1 Ball , 2015 .

[2]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[3]  Laurent Condat Fast projection onto the simplex and the l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {l}_\mathbf {1}$$\end{ , 2015, Mathematical Programming.

[4]  T. Chan,et al.  Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .

[5]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[6]  Guy Gilboa,et al.  A Total Variation Spectral Framework for Scale and Texture Analysis , 2014, SIAM J. Imaging Sci..

[7]  Andy M. Yip,et al.  Recent Developments in Total Variation Image Restoration , 2004 .

[8]  Antonin Chambolle,et al.  An Upwind Finite-Difference Method for Total Variation-Based Image Smoothing , 2011, SIAM J. Imaging Sci..

[9]  F. Malgouyres,et al.  Smoothing the finite differences defining the Non-local Total Variation and application in image restoration , 2016 .

[10]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[11]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[12]  Mila Nikolova,et al.  Local Strong Homogeneity of a Regularized Estimator , 2000, SIAM J. Appl. Math..

[13]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[15]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[16]  Lionel Moisan,et al.  Total Variation denoising using iterated conditional expectation , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[17]  Thomas Pock,et al.  Non-local Total Generalized Variation for Optical Flow Estimation , 2014, ECCV.

[18]  Abderrahim Elmoataz,et al.  Solving Minimal Surface Problems on Surfaces and Point Clouds , 2015, SSVM.

[19]  Jean-François Aujol,et al.  Adaptive Regularization of the NL-Means: Application to Image and Video Denoising , 2014, IEEE Transactions on Image Processing.

[20]  Laurent Condat,et al.  Discrete Total Variation: New Definition and Minimization , 2017, SIAM J. Imaging Sci..

[21]  Xavier Bresson,et al.  Multiclass Total Variation Clustering , 2013, NIPS.

[22]  Abderrahim Elmoataz,et al.  Nonlinear Multilayered Representation of Graph-Signals , 2013, Journal of Mathematical Imaging and Vision.

[23]  Abderrahim Elmoataz,et al.  Nonlocal Discrete Regularization on Weighted Graphs: A Framework for Image and Manifold Processing , 2008, IEEE Transactions on Image Processing.