Games with second-order expected utility

Abstract This paper studies games when agents have second-order expected utility. It examines the theoretical predictions of the model and compares its performance in explaining behavior in experimental data on games with that of quantal response equilibrium.

[1]  Larry G. Epstein Preference, Rationalizability and Equilibrium , 1997 .

[2]  Christian Gollier,et al.  Portfolio Choices and Asset Prices: The Comparative Statics of Ambiguity Aversion , 2011 .

[3]  Nir Vulkan An Economist's Perspective on Probability Matching , 2000 .

[4]  A Simple Parametric Model Selection Test , 2017 .

[5]  D. Shanks,et al.  A Re-examination of Probability Matching and Rational Choice , 2002 .

[6]  Uyanga U. Turmunkh,et al.  Trust as a decision under ambiguity , 2018, Experimental Economics.

[7]  A. Roth,et al.  Game-Theoretic Models and the Role of Information in Bargaining , 1979 .

[8]  Tae Kun Seo,et al.  The Effects of Shifts in a Return Distribution on Optimal Portfolios , 1990 .

[9]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[10]  George Tsebelis,et al.  The Abuse of Probability in Political Analysis: The Robinson Crusoe Fallacy , 1989, American Political Science Review.

[11]  Robert F. Nau,et al.  Uncertainty Aversion with Second-Order Utilities and Probabilities , 2006, Manag. Sci..

[12]  Colin Camerer,et al.  Stationary Concepts for Experimental 2 X 2 Games: Comment , 2011 .

[13]  Kyoungwon Seo,et al.  AMBIGUITY AND SECOND-ORDER BELIEF , 2009 .

[14]  Jacob K. Goeree,et al.  Risk averse behavior in generalized matching pennies games , 2003, Games Econ. Behav..

[15]  Andrew Ellis,et al.  On dynamic consistency in ambiguous games , 2018, Games Econ. Behav..

[16]  A. Tversky,et al.  Weighing Risk and Uncertainty , 1995 .

[17]  Second-Order Expected Utility , 2009 .

[18]  William S. Neilson A simplified axiomatic approach to ambiguity aversion , 2010 .

[19]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[20]  Eric Bennett Rasmusen,et al.  Are Equilibrium Strategies Unaffected by Incentives? , 1992 .

[21]  Evan L. Porteus,et al.  Temporal Resolution of Uncertainty and Dynamic Choice Theory , 1978 .

[22]  Sujoy Mukerji,et al.  Incomplete Information Games with Ambiguity Averse Players , 2020 .

[23]  R. McKelvey,et al.  Quantal Response Equilibria for Normal Form Games , 1995 .

[24]  Soo Hong Chew,et al.  Small worlds: Modeling attitudes toward sources of uncertainty , 2008, J. Econ. Theory.

[25]  Burkhard C. Schipper,et al.  Ambiguity and Social Interaction , 2007 .

[26]  V. Crawford Equilibrium without independence , 1990 .

[27]  Uzi Segal,et al.  The Ellsberg Paradox and Risk Aversion: An Anticipated Utility Approach , 1987 .

[28]  Bryan R. Routledge,et al.  Exotic Preferences for Macroeconomists , 2004, NBER Macroeconomics Annual.

[29]  Galit Shmueli,et al.  To Explain or To Predict? , 2010, 1101.0891.

[30]  J. Ochs Games with Unique, Mixed Strategy Equilibria: An Experimental Study , 1995 .

[31]  R. Selten,et al.  Stationary Concepts for Experimental 2x2 Games , 2008 .

[32]  Roberto A. Weber,et al.  The effects of payoff magnitude and heterogeneity on behavior in 2 x 2 games with unique mixed strategy equilibria , 2000 .

[33]  Jacob K. Goeree,et al.  Quantal Response Equilibrium , 2018 .

[34]  J. Eichberger,et al.  Optimism and Pessimism in Games , 2014 .

[35]  Xiaoxia Shi,et al.  A nondegenerate Vuong test , 2015 .

[36]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[37]  Massimo Marinacci,et al.  Ambiguity attitudes and self-confirming equilibrium in sequential games , 2019, Games Econ. Behav..

[38]  Massimo Marinacci,et al.  Ambiguous Games , 2000, Games Econ. Behav..

[39]  A. Edlin,et al.  Strict Monotonicity in Comparative Statics , 1998 .

[40]  Uzi Segal,et al.  Two Stage Lotteries Without the Reduction Axiom , 1990 .

[41]  Haluk Ergin,et al.  A theory of subjective compound lotteries , 2009, J. Econ. Theory.

[42]  Mohammed Abdellaoui,et al.  The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation , 2011 .

[43]  Zvi Safra,et al.  Existence and dynamic consistency of Nash equilibrium with non-expected utility preferences , 1991 .

[44]  Kevin Leyton-Brown,et al.  Predicting human behavior in unrepeated, simultaneous-move games , 2013, Games Econ. Behav..

[45]  David Kelsey,et al.  Are the treasures of game theory ambiguous? , 2011 .