Dual-path source engineering in integrated quantum optics

Quantum optics in combination with integrated optical devices shows great promise for efficient manipulation of single photons. New physical concepts, however, can only be found when these fields truly merge and reciprocally enhance each other. Here we work at the merging point and investigate the physical concept behind a two-coupled-waveguide system with an integrated parametric down-conversion process. We use the eigenmode description of the linear system and the resulting modification in momentum conservation to derive the state generation protocol for this type of device. With this new concept of state engineering, we are able to effectively implement a two-in-one waveguide source that produces the useful two-photon NOON state without extra overhead such as phase stabilization or narrow-band filtering. Experimentally, we benchmark our device by measuring a two-photon NOON state fidelity of $\mathcal{F} = (84.2 \pm 2.6) \%$ and observe the characteristic interferometric pattern directly given by the doubled phase dependence with a visibility of $V_{\mathrm{NOON}} = (93.3 \pm 3.7) \%$.

[1]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .

[2]  W. Marsden I and J , 2012 .

[3]  P. Xu,et al.  On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. , 2014, Physical review letters.

[4]  G. Vallone,et al.  Integrated photonic quantum gates for polarization qubits , 2011, Nature communications.

[5]  S. Ruschin,et al.  Relation between normal-mode and coupled-mode analyses of parallel waveguides , 1984 .

[6]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[7]  Yuri S. Kivshar,et al.  Generation of Nonclassical Biphoton States through Cascaded Quantum Walks on a Nonlinear Chip , 2014 .

[8]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[9]  Stefan Nolte,et al.  Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits , 2014, Scientific Reports.

[10]  A. Yariv,et al.  Quantum Fluctuations and Noise in Parametric Processes. I. , 1961 .

[11]  A. Schreiber,et al.  Spatio-spectral characteristics of parametric down-conversion in waveguide arrays , 2013, 1305.6806.

[12]  Dragomir N Neshev,et al.  Spontaneous parametric down-conversion and quantum walks in arrays of quadratic nonlinear waveguides. , 2012, Physical review letters.

[13]  G. Vallone,et al.  Two-particle bosonic-fermionic quantum walk via integrated photonics. , 2011, Physical review letters.

[14]  Cěskoslovenská akademie věd. Czechoslovak journal of physics. B , 1961 .

[15]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[16]  A. Yariv,et al.  Channel optical waveguide directional couplers , 1973 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  R. Sillitto The Quantum Theory of Light , 1974 .

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  Zach DeVito,et al.  Opt , 2017 .

[21]  Christine Silberhorn,et al.  Post-selection free, integrated optical source of non-degenerate, polarization entangled photon pairs. , 2013, Optics express.

[22]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[23]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[24]  K. Laiho,et al.  Spatial modes in waveguided parametric down-conversion , 2009, 0904.4668.

[25]  N. Gisin,et al.  Highly efficient photon-pair source using periodically poled lithium niobate waveguide , 2000 .

[26]  Igor Jex,et al.  Driven quantum walks. , 2014, Physical review letters.

[27]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[28]  M D'Angelo,et al.  Two-photon diffraction and quantum lithography. , 2001, Physical review letters.

[29]  J. Dankovicová Czech , 1997, Journal of the International Phonetic Association.

[30]  Fabio Sciarrino,et al.  Rotated waveplates in integrated waveguide optics , 2014, Nature Communications.

[31]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[32]  Damon Afkari,et al.  ? ? ? ? ? ? ? ? ? ? ? ? ? 30 ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2011 .

[33]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.