Fluorescence resonance energy transfer between a quantum dot donor and a dye acceptor attached to DNA.

We show that direct coupling of a dye-labelled DNA (acceptor) to a quantum dot (QD) donor significantly reduces the donor-acceptor distance and improves the FRET efficiency: a highly efficient FRET (approximately 88%) at a low acceptor-to-donor ratio of 2 has been achieved at the single-molecule level.

[1]  Taekjip Ha,et al.  Single-molecule quantum-dot fluorescence resonance energy transfer. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[3]  S. Balasubramanian,et al.  Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Igor L. Medintz,et al.  A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. , 2005, Journal of the American Chemical Society.

[5]  Stephen G. Hickey,et al.  Highly Luminescent Water-Soluble CdTe Quantum Dots , 2003 .

[6]  Zhiyong Tang,et al.  Multicolor luminescence patterning by photoactivation of semiconductor nanoparticle films. , 2003, Journal of the American Chemical Society.

[7]  J. Baumberg,et al.  Quenching of CdSe quantum dot emission, a new approach for biosensing. , 2005, Chemical communications.

[8]  R. Zentel,et al.  CdSe/ZnS nanocrystals with dye-functionalized polymer ligands containing many anchor groups. , 2005, Angewandte Chemie.

[9]  Igor Nabiev,et al.  Energy Transfer in Aqueous Solutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and in Quantum Dot−Nanogold Assemblies , 2004 .

[10]  Chad A. Mirkin,et al.  Programmed Assembly of DNA Functionalized Quantum Dots , 1999 .

[11]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[12]  D. Klenerman,et al.  Fabrication of Three‐Dimensional Surface Structures with Highly Fluorescent Quantum Dots by Surface‐Templated Layer‐by‐Layer Assembly , 2005 .

[13]  Igor L. Medintz,et al.  Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. , 2003, Journal of the American Chemical Society.

[14]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[15]  Albert Libchaber,et al.  Single-molecule measurements of gold-quenched quantum dots. , 2004, Physical review letters.

[16]  Igor L. Medintz,et al.  Reversible modulation of quantum dot photoluminescence using a protein- bound photochromic fluorescence resonance energy transfer acceptor. , 2004, Journal of the American Chemical Society.

[17]  C. Abell,et al.  Afm study on protein immobilization on charged surfaces at the nanoscale: Toward the fabrication of three-dimensional protein nanostructures , 2003 .

[18]  Nicholas A. Kotov,et al.  Albumin−CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect , 2001 .

[19]  Xiaogang Peng,et al.  Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. , 2003, Journal of the American Chemical Society.

[20]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[21]  Eunkeu Oh,et al.  Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. , 2005, Journal of the American Chemical Society.

[22]  A Paul Alivisatos,et al.  Discrete nanostructures of quantum dots/Au with DNA. , 2004, Journal of the American Chemical Society.