An unbiased Nitsche’s approximation of the frictional contact between two elastic structures
暂无分享,去创建一个
[1] Barbara I. Wohlmuth,et al. Dual Quadratic Mortar Finite Element Methods for 3D Finite Deformation Contact , 2012, SIAM J. Sci. Comput..
[2] Franz Chouly,et al. Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..
[3] Jérôme Pousin,et al. A fictitious domain method for frictionless contact problems in elasticity using Nitsche's method , 2016 .
[4] Barbara Wohlmuth,et al. Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.
[5] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[6] T. Dupont,et al. Polynomial approximation of functions in Sobolev spaces , 1980 .
[7] Tod A. Laursen,et al. Formulation and treatment of frictional contact problems using finite elements , 1992 .
[8] B. Wohlmuth,et al. A comparison of mortar and Nitsche techniques for linear elasticity , 2004 .
[9] T. Laursen,et al. A mortar‐finite element formulation for frictional contact problems , 2000 .
[10] M. Moussaoui,et al. Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan , 1992 .
[11] Franz Chouly,et al. A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..
[12] J. C. Simo,et al. A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems , 1993 .
[13] Rolf Krause,et al. Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..
[14] Rolf Stenberg,et al. On some techniques for approximating boundary conditions in the finite element method , 1995 .
[15] Jaroslav Haslinger,et al. Numerical methods for unilateral problems in solid mechanics , 1996 .
[16] P. Hansbo,et al. A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .
[17] Yves Renard,et al. Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .
[18] Franz Chouly,et al. On convergence of the penalty method for unilateral contact problems , 2012, 1204.4136.
[19] T. Laursen. Computational Contact and Impact Mechanics , 2003 .
[20] Jürgen Fuhrmann,et al. Guermond : " Theory and Practice of Finite Elements " , 2017 .
[21] F. B. Belgacem,et al. EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .
[22] P. Hansbo,et al. A finite element method for domain decomposition with non-matching grids , 2003 .
[23] Roger A. Sauer,et al. An unbiased computational contact formulation for 3D friction , 2015 .
[24] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[25] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[26] Patrick Hild,et al. A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics , 2010, Numerische Mathematik.
[27] Haim Brezis,et al. Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .
[28] Peter Hansbo,et al. Stabilized Lagrange multiplier methods for bilateral elastic contact with friction , 2006 .
[29] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[30] Franz Chouly,et al. An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .