An unbiased Nitsche’s approximation of the frictional contact between two elastic structures

Most of the numerical methods dedicated to the contact problem involving two elastic bodies are based on the master/slave paradigm. It results in important detection difficulties in the case of self-contact and multi-body contact, where it may be impractical, if not impossible, to a priori nominate a master surface and a slave one. In this work we introduce an unbiased finite element method for the finite element approximation of frictional contact between two elastic bodies in the small deformation framework. In the proposed method the two bodies expected to come into contact are treated in the same way (no master and slave surfaces). The key ingredient is a Nitsche-based formulation of contact conditions, as in Chouly et al. (Math Comput 84:1089–1112, 2015). We carry out the numerical analysis of the method, and prove its well-posedness and optimal convergence in the $$H^1$$H1-norm. Numerical experiments are performed to illustrate the theoretical results and the performance of the method.

[1]  Barbara I. Wohlmuth,et al.  Dual Quadratic Mortar Finite Element Methods for 3D Finite Deformation Contact , 2012, SIAM J. Sci. Comput..

[2]  Franz Chouly,et al.  Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..

[3]  Jérôme Pousin,et al.  A fictitious domain method for frictionless contact problems in elasticity using Nitsche's method , 2016 .

[4]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[5]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[6]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[7]  Tod A. Laursen,et al.  Formulation and treatment of frictional contact problems using finite elements , 1992 .

[8]  B. Wohlmuth,et al.  A comparison of mortar and Nitsche techniques for linear elasticity , 2004 .

[9]  T. Laursen,et al.  A mortar‐finite element formulation for frictional contact problems , 2000 .

[10]  M. Moussaoui,et al.  Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan , 1992 .

[11]  Franz Chouly,et al.  A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..

[12]  J. C. Simo,et al.  A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems , 1993 .

[13]  Rolf Krause,et al.  Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..

[14]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[15]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[16]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[17]  Yves Renard,et al.  Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .

[18]  Franz Chouly,et al.  On convergence of the penalty method for unilateral contact problems , 2012, 1204.4136.

[19]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[20]  Jürgen Fuhrmann,et al.  Guermond : " Theory and Practice of Finite Elements " , 2017 .

[21]  F. B. Belgacem,et al.  EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .

[22]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[23]  Roger A. Sauer,et al.  An unbiased computational contact formulation for 3D friction , 2015 .

[24]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[25]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[26]  Patrick Hild,et al.  A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics , 2010, Numerische Mathematik.

[27]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .

[28]  Peter Hansbo,et al.  Stabilized Lagrange multiplier methods for bilateral elastic contact with friction , 2006 .

[29]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[30]  Franz Chouly,et al.  An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .