Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient Ansätze on a Quantum Processor

The resources required to run a high-accuracy variational quantum eigensolver algorithm with a dynamically created ansatz are quantified and reduced significantly, easing the quantum simulation of many-body systems.

[1]  Masoud Mohseni,et al.  Layerwise learning for quantum neural networks , 2020, Quantum Machine Intelligence.

[2]  Harper R. Grimsley,et al.  Is the Trotterized UCCSD Ansatz Chemically Well-Defined? , 2019, Journal of chemical theory and computation.

[3]  Nicholas J. Mayhall,et al.  Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm , 2019, npj Quantum Information.

[4]  Edward Grant,et al.  An initialization strategy for addressing barren plateaus in parametrized quantum circuits , 2019, Quantum.

[5]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[6]  Nicolas P. D. Sawaya,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[7]  K. B. Whaley,et al.  Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. , 2018, Journal of chemical theory and computation.

[8]  Ivano Tavernelli,et al.  Gate-Efficient Simulation of Molecular Eigenstates on a Quantum Computer , 2018, Physical Review Applied.

[9]  Scott N. Genin,et al.  Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer. , 2018, Journal of chemical theory and computation.

[10]  Ivano Tavernelli,et al.  Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions , 2018, Physical Review A.

[11]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[12]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[13]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[14]  Kanav Setia,et al.  Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer. , 2017, The Journal of chemical physics.

[15]  Markus Reiher,et al.  Self-adaptive tensor network states with multi-site correlators. , 2017, The Journal of chemical physics.

[16]  Jarrod R. McClean,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2017, 1707.06408.

[17]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[18]  Matthias Troyer,et al.  Operator locality in the quantum simulation of fermionic models , 2017, 1701.07072.

[19]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[20]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[21]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[22]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[23]  R. Schneider,et al.  Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems , 2015, Journal of chemical theory and computation.

[24]  F. Verstraete,et al.  Tensor product methods and entanglement optimization for ab initio quantum chemistry , 2014, 1412.5829.

[25]  L. Lamata,et al.  From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.

[26]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[27]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[28]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[29]  F. Verstraete,et al.  Complete-graph tensor network states: a new fermionic wave function ansatz for molecules , 2010, 1004.5303.

[30]  Chad Rigetti,et al.  Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies , 2010 .

[31]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[32]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[33]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[34]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[35]  R. Feynman Simulating physics with computers , 1999 .

[36]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[37]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[38]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[39]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[40]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .