Optimal Latin hypercube designs for the Kullback–Leibler criterion

Space-filling designs are commonly used for selecting the input values of time-consuming computer codes. Computer experiment context implies two constraints on the design. First, the design points should be evenly spread throughout the experimental region. A space-filling criterion (for instance, the maximin distance) is used to build optimal designs. Second, the design should avoid replication when projecting the points onto a subset of input variables (non-collapsing). The Latin hypercube structure is often enforced to ensure good projective properties. In this paper, a space-filling criterion based on the Kullback–Leibler information is used to build a new class of Latin hypercube designs. The new designs are compared with several traditional optimal Latin hypercube designs and appear to perform well.

[1]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[2]  Henry P. Wynn,et al.  Maximum entropy sampling , 1987 .

[3]  C. Currin,et al.  A Bayesian Approach to the Design and Analysis of Computer Experiments , 1988 .

[4]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[5]  Jeong‐Soo Park Optimal Latin-hypercube designs for computer experiments , 1994 .

[6]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[7]  Eva Riccomagno,et al.  Experimental Design and Observation for Large Systems , 1996, Journal of the Royal Statistical Society: Series B (Methodological).

[8]  Art B. Owen,et al.  9 Computer experiments , 1996, Design and analysis of experiments.

[9]  L. Györfi,et al.  Nonparametric entropy estimation. An overview , 1997 .

[10]  William Li,et al.  Columnwise-pairwise algorithms with applications to the construction of supersaturated designs , 1997 .

[11]  Kenny Q. Ye,et al.  Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .

[12]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[13]  Runze Li,et al.  Design and Modeling for Computer Experiments , 2005 .

[14]  A. Sudjianto,et al.  An Efficient Algorithm for Constructing Optimal Design of Computer Experiments , 2005, DAC 2003.

[15]  M. Liefvendahl,et al.  A study on algorithms for optimization of Latin hypercubes , 2006 .

[16]  Dick den Hertog,et al.  Space-Filling Latin Hypercube Designs for Computer Experiments (Replaced by CentER DP 2008-104) , 2006 .

[17]  Thomas Hochkirchen Design and Modeling for Computer Experiments by K.-T. Fang, R. Li and A. Sudjianto , 2006 .

[18]  Dick den Hertog,et al.  Space-filling Latin hypercube designs for computer experiments , 2008 .

[19]  Andrea Grosso,et al.  Finding maximin latin hypercube designs by Iterated Local Search heuristics , 2009, Eur. J. Oper. Res..

[20]  J. Franco Plans d’expériences numériques d’information de Kullback-Leibler minimale , 2009 .

[21]  D. Steinberg,et al.  Computer experiments: a review , 2010 .