Hundred-Joule-level, nanosecond-pulse Nd:glass laser system with high spatiotemporal beam quality

A 100-J-level Nd:glass laser system in nanosecond-scale pulse width has been constructed to perform as a standard source of high-fluence-laser science experiments. The laser system, operating with typical pulse durations of 3–5 ns and beam diameter 60 mm, employs a sequence of successive rod amplifiers to achieve 100-J-level energy at 1053 nm at 3 ns. The frequency conversion can provide energy of 50-J level at 351 nm. In addition to the high stability of the energy output, the most valuable of the laser system is the high spatiotemporal beam quality of the output, which contains the uniform square pulse waveform, the uniform flat-top spatial fluence distribution and the uniform flat-top wavefront.

[1]  Zach DeVito,et al.  Opt , 2017 .

[2]  R. G. Adams,et al.  Z-Beamlet: a multikilojoule, terawatt-class laser system. , 2005, Applied optics.

[3]  Danijela Rostohar,et al.  Overview of the HiLASE project: high average power pulsed DPSSL systems for research and industry , 2014, High Power Laser Science and Engineering.

[4]  C. P. Navathe,et al.  Design, development and performance characteristics of a large aperture disc amplifier for high power Nd: Glass laser chain , 2008 .

[5]  E. Bliss,et al.  The Shiva laser-fusion facility , 1981, IEEE Journal of Quantum Electronics.

[6]  Mark Bowers,et al.  The injection laser system on the National Ignition Facility , 2007, SPIE LASE.

[7]  W. M. He,et al.  Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering , 2010 .

[8]  W. M. He,et al.  Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror , 2010 .

[9]  Antonio Lucianetti,et al.  Design of high-energy-class cryogenically cooled Yb3+∶YAG multislab laser system with low wavefront distortion , 2013 .

[10]  M. Henesian,et al.  Stimulated rotational Raman scattering in nitrogen in long air paths. , 1985, Optics letters.

[11]  Vincent Bagnoud,et al.  Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator. , 2004, Optics letters.

[12]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[13]  Dexin Ba,et al.  High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system. , 2015, Optics express.

[14]  Zhi M Liao,et al.  Probability of growth of small damage sites on the exit surface of fused silica optics. , 2012, Optics express.

[15]  Dianyuan Fan,et al.  Status of the SG-III solid state laser project , 1999, Other Conferences.

[16]  Zhi M Liao,et al.  Exploration of the multiparameter space of nanosecond-laser damage growth in fused silica optics. , 2011, Applied optics.

[17]  E A Khazanov,et al.  Neodymium glass laser with a phase conjugate mirror producing 220 J pulses at 0.02 Hz repetition rate. , 2014, Optics express.

[18]  E. Khazanov,et al.  Compact 300-J/300-GW Frequency-Doubled Neodymium Glass Laser—Part II: Description of Laser Setup , 2009, IEEE Journal of Quantum Electronics.

[19]  A. Schmid,et al.  In situ detection and analysis of laser-induced damage on a 1.5-m multilayer-dielectric grating compressor for high-energy, petawatt-class laser systems. , 2010, Optics express.

[20]  E. Khazanov,et al.  Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses , 2005 .

[21]  Dexin Ba,et al.  Spatial beam shaping for high-power frequency tripling lasers based on a liquid crystal spatial light modulator , 2016 .

[22]  R. S. Craxton,et al.  High efficiency frequency tripling schemes for high-power Nd: Glass lasers , 1981 .

[23]  W. C. Scott,et al.  BIREFRINGENCE COMPENSATION AND TEM00 MODE ENHANCEMENT IN A Nd: YAG LASER , 1971 .

[24]  Seung-Whan Bahk,et al.  A high-resolution, adaptive beam-shaping system for high-power lasers. , 2010, Optics express.

[25]  Jake Bromage,et al.  OMEGA EP : High-energy petawatt capability for the OMEGA laser facility , 2006 .

[26]  J K Lawson,et al.  Harmonic conversion of large-aperture 1.05-microm laser beams for inertial-confinement fusion research. , 1992, Applied optics.

[27]  Gerard Mourou,et al.  Quasi-flat-top frequency-doubled Nd:glass laser for pumping of high-power Ti:sapphire amplifiers at a 0.1 Hz repetition rate. , 2008 .

[28]  Liu Hongjie,et al.  Subsurface defects of fused silica optics and laser induced damage at 351 nm. , 2013, Optics express.

[29]  Helena Jelinkova,et al.  Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE). , 2014, Applied optics.

[30]  P M Celliers,et al.  Spatial filter pinhole for high-energy pulsed lasers. , 1998, Applied optics.

[31]  D Milam,et al.  Spatial filter pinhole development for the national ignition facility. , 2000, Applied optics.

[32]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[33]  J. Zuegel,et al.  Precompensation of gain nonuniformity in a Nd:glass amplifier using a programmable beam-shaping system , 2014 .

[34]  J. Zuegel,et al.  Highly stable, all-solid-state Nd:YLF regenerative amplifier. , 2004, Applied optics.

[35]  S. Sutton,et al.  National Ignition Facility laser performance status. , 2007, Applied optics.

[36]  Zhiwei Lu,et al.  Numerical investigation of the effects of smoothing by spectral dispersion on stimulated rotational Raman scattering , 2013 .

[37]  Xiaodong Yuan,et al.  Status of prototype of SG-III high-power solid-state laser , 2009, International Symposium on High Power Laser Systems and Applications.

[38]  Feng Bin,et al.  Beam wavefront control of a thermal inertia laser for inertial confinement fusion application. , 2009, Applied optics.

[39]  Laurent Lamaignère,et al.  Damage growth in fused silica optics at 351 nm: refined modeling of large-beam experiments , 2014 .

[40]  J. Y. Lee,et al.  High-power Nd3+:glass laser system in KAIST (Sinmyung I) , 1997 .

[41]  Steven B. Sutton,et al.  National Ignition Facility commissioning and performance , 2004, SPIE LASE.

[42]  Timothy L. Weiland,et al.  A large-aperture high-energy laser system for optics and optical component testing , 2004, SPIE Laser Damage.

[43]  E. Khazanov,et al.  Compact 300-J/300-GW Frequency-Doubled Neodymium Glass Laser—Part I: Limiting Power by Self-Focusing , 2009, IEEE Journal of Quantum Electronics.

[44]  John L. Remo,et al.  High energy density laser interactions with planetary and astrophysical materials: methodology and data , 2008, High-Power Laser Ablation.

[45]  Zhi M Liao,et al.  Predictive modeling techniques for nanosecond-laser damage growth in fused silica optics. , 2012, Optics express.

[46]  W. E. Behring,et al.  Transitions in lithiumlike Cu 26+ and berylliumlike Cu 25+ of interest for x-ray laser research , 1987 .

[47]  Hiroyuki Daido,et al.  High-spatiotemporal-quality petawatt-class laser system. , 2010, Applied optics.

[48]  Yang Wang,et al.  Hundred picoseconds laser pulse amplification based on scalable two-cells Brillouin amplifier , 2014 .

[49]  L. Frantz,et al.  Theory of Pulse Propagation in a Laser Amplifier , 1963 .

[50]  N. Hopps,et al.  Multipass reconfiguration of the HELEN Nd:glass laser at the Atomic Weapons Establishment. , 2002, Applied optics.

[51]  Edward I. Moses,et al.  The National Ignition Facility: enabling fusion ignition for the 21st century , 2004 .

[53]  E. Khazanov,et al.  Neodymium glass laser with a pulse energy of and a pulse repetition rate of , 2013 .