Predicting microstructure and strength of maraging steels: Elemental optimisation

A physics–based modelling framework to describe microstructure and mechanical properties in maraging steels is presented. It is based on prescribing the hierarchical structure of the martensitic matrix, including dislocation density, and lath and high–angle grain boundary spacing. The evolution of lath–shaped reverted austenite is described using grain–boundary diffusion laws within a lath unit. The dislocation density provides the preferential nucleation sites for precipitation, whereas descriptions for particle nucleation, growth and coarsening evolution are identified for Ni3Ti, NiAl and its variants, and BCC–Cu clusters. These results are combined to describe the hardness at different ageing temperatures in several [Formula presented], [Formula presented] and [Formula presented] steels. A critical assessment on individual contributions of typical alloying elements is performed. Ni and Mn control the kinetics of austenite formation, where the latter shows stronger influence on the growth kinetics. Ti additions induce higher hardness by precipitating stronger Ni3Ti, whereas Cu clusters induce low strength. A relationship between the reverted austenite and the total elongation in overaging conditions is also found. This result allows to identify optimal process and alloy design scenarios to improve the ductility whilst preserving high hardness in commercial maraging steels.

[1]  I. May,et al.  Discussion of “An FIM-Atom probe study of the precipitation of copper from iron - 1.4 at Pct copper” , 1974, Metallurgical and Materials Transactions B.

[2]  S. J. Lee,et al.  The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel , 2014 .

[3]  Y. Estrin,et al.  Reverse α′ → γ transformation mechanisms of martensitic Fe–Mn and age-hardenable Fe–Mn–Pd alloys upon fast and slow continuous heating , 2014 .

[4]  K. Furuya,et al.  Transformation of DO24 η-Ni3Ti phase to face-centered cubic austenite during isothermal aging of an Fe-Ni-Ti alloy , 2009 .

[5]  Y. Komizo,et al.  Variant Selection of Low Carbon High Alloy Steel in an Austenite Grain during Martensite Transformation , 2012 .

[6]  T. Lippmann,et al.  Influence of reverted austenite on static and dynamic mechanical properties of a PH 13-8 Mo maraging steel , 2010 .

[7]  H. Bhadeshia,et al.  Modelling and characterisation of V4C3 precipitation and cementite dissolution during tempering of Fe-C-V martensitic steel , 2003 .

[8]  Michael K Miller,et al.  Characterization of nanoscale NiAl-type precipitates in a ferritic steel by electron microscopy and atom probe tomography , 2010 .

[9]  Ping Liu,et al.  Precipitation hardening in a 12%Cr–9%Ni–4%Mo–2%Cu stainless steel , 2004 .

[10]  Michel Perez,et al.  Implementation of classical nucleation and growth theories for precipitation , 2008 .

[11]  C. M. Wayman,et al.  Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels , 1990 .

[12]  X. Sauvage,et al.  Modeling of precipitation kinetics in multicomponent systems: Application to model superalloys , 2015 .

[13]  H. Lee,et al.  Transformation of ordered face-centered tetragonal θ-MnNi phase to face-centered cubic austenite during isothermal aging of an Fe–Mn–Ni alloy , 2008 .

[14]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[15]  E. Kozeschnik Modeling Solid-State Precipitation , 2012 .

[16]  C. Gandin,et al.  Numerical simulation of precipitation in multicomponent Ni-base alloys , 2013 .

[17]  S. Mazumder,et al.  Precipitation in 18 wt% Ni maraging steel of grade 350 , 2000 .

[18]  G. Smith,et al.  Three-dimensional atomic-scale mapping of a cottrell atmosphere around a dislocation in iron , 2000 .

[19]  R. Fleischer,et al.  Substitutional solution hardening , 1963 .

[20]  D. Ponge,et al.  Characterization of Nano‐Sized Precipitates in a Mn‐Based Lean Maraging Steel by Atom Probe Tomography , 2011 .

[21]  H. Leitner,et al.  Modeling of the yield strength of a stainless maraging steel , 2010 .

[22]  G. Inden,et al.  Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation , 2014, 1402.0232.

[23]  D. Ponge,et al.  Designing Ultrahigh Strength Steels with Good Ductility by Combining Transformation Induced Plasticity and Martensite Aging , 2009 .

[24]  E. Kozeschnik,et al.  Reverted austenite in PH 13-8 Mo maraging steels , 2010 .

[25]  J. C. Werenskiold,et al.  Characterization and modeling of precipitation kinetics in an Al-Zn-Mg alloy , 2000 .

[26]  G. S. Ansell,et al.  Criteria for yielding of dispersion-strengthened alloys , 1960 .

[27]  M. N. Rao Progress in understanding the metallurgy of 18% nickel maraging steels , 2006 .

[28]  R. Labusch A Statistical Theory of Solid Solution Hardening , 1970 .

[29]  N. Heo Ductile-brittle-ductile transition and grain boundary segregation of Mn and Ni in an Fe-6Mn-12Ni alloy , 1996 .

[30]  H. Leitner,et al.  Effect of Cu on the evolution of precipitation in an Fe–Cr–Ni–Al–Ti maraging steel , 2010 .

[31]  A. Deschamps,et al.  Influence of predeformation and agEing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress , 1998 .

[32]  U. Viswanathan,et al.  Effects of austenite reversion during overageing on the mechanical properties of 18 Ni (350) maraging steel , 2005 .

[33]  Joseph D. Robson,et al.  Modelling precipitation sequences in power plant steels Part 1 – Kinetic theory , 1997 .

[34]  S. R. Goodman,et al.  An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part I: Field-ion microscopy , 1973 .

[35]  Xiaoxu Huang,et al.  Effect of block size on the strength of lath martensite in low carbon steels , 2006 .

[36]  M. Fine,et al.  Coarsening kinetics of coherent NiAl-type precipitates in FeNiAl and FeNiAlMo alloys , 1984 .

[37]  A. Ardell,et al.  Precipitation hardening , 1985 .

[38]  D. M. Vanderwalker The precipitation sequence of Ni3Ti in Co-free maraging steel , 1987, Metallurgical and Materials Transactions A.

[39]  D. Ponge,et al.  Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe–Mn maraging steels , 2014 .

[40]  M. Cohen,et al.  Diffusion of nickel into iron , 1961 .

[41]  P. Rivera-Díaz-del-Castillo,et al.  Computational design of UHS maraging stainless steels incorporating composition as well as austenitisation and ageing temperatures as optimisation parameters , 2009 .

[42]  H. Jones,et al.  Microstructure and thermal stability of melt-spun Al-Nd and Al-Ce alloy ribbons , 1996 .

[43]  M Schober,et al.  Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel. , 2009, Ultramicroscopy.

[44]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[45]  Martin L. Green,et al.  Plastic deformation of single crystals of the heusler alloy Cu2MnAl , 1977 .

[46]  F. Y. Kong,et al.  Effects of solution treatment temperature on grain growth and mechanical properties of high strength 18%Ni cobalt free maraging steel , 2003 .

[47]  P. Nayar,et al.  Kinetics of precipitation in 17–4 PH stainless steel , 1989 .

[48]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[49]  S. Sandlöbes,et al.  Linear complexions: Confined chemical and structural states at dislocations , 2015, Science.

[50]  Yi-Rong He,et al.  Microstructure and mechanical properties of a 2000 MPa grade co-free maraging steel , 2005 .

[51]  E. Kozeschnik,et al.  Thermo-kinetic modeling of Cu precipitation in α-Fe , 2015 .

[52]  A. Deschamps,et al.  Characterization and Modeling of Precipitation Kinetics in a Fe-Si-Ti Alloy , 2012, Metallurgical and Materials Transactions A.

[53]  P. Rivera-Díaz-del-Castillo,et al.  Understanding the factors controlling the hardness in martensitic steels , 2016 .

[54]  Y. Adachi,et al.  Morphology and Crystallography of Sub-Blocks in Ultra-Low Carbon Lath Martensite Steel , 2009 .

[55]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[56]  Z. Guo,et al.  Maraging steels: Modelling of microstructure, properties and applications , 2009 .

[57]  H. Leitner,et al.  Strengthening behavior of Fe–Cr–Ni–Al–(Ti) maraging steels , 2011 .

[58]  M. Perez Gibbs-Thomson effects in phase transformations , 2005 .

[59]  E. A. Wilson,et al.  Modeling the evolution of microstructure during the processing of maraging steels , 2004 .

[60]  Abbas Najafizadeh,et al.  Modeling the reversion of martensite in the cold worked AISI 304 stainless steel by artificial neural networks , 2009 .

[61]  R. Miller Ultrafine-grained microstructures and mechanical properties of alloy steels , 1972 .

[62]  E. Kozeschnik,et al.  Computer simulation of the yield strength evolution in Cu-precipitation strengthened ferritic steel , 2010 .

[63]  V. Radmilović,et al.  On the formation of hierarchically structured L21-Ni2TiAl type precipitates in a ferritic alloy , 2013, Journal of Materials Science.

[64]  A. Bowen,et al.  Solute diffusion in alpha- and gamma-iron , 1970 .

[65]  H. Mehrer,et al.  Interdiffusion, Kirkendall effect, and Al self-diffusion in iron - aluminium alloys , 2005 .

[66]  A. Kermanpur,et al.  Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless steel , 2009 .

[67]  H. Bhadeshia,et al.  Modelling and characterisation of Mo2C precipitation and cementite dissolution during tempering of Fe–C–Mo martensitic steel , 2003 .

[68]  Y. Yin,et al.  Microstructural control of maraging steel C300 , 2011 .

[69]  E. A. Wilson,et al.  Aging and brittleness in an Fe-Ni-Mn alloy , 1972 .

[70]  C. M. Wayman,et al.  Precipitation behavior and microstructural changes in maraging FeNiMnTi alloys , 1990 .

[71]  P. Ferreira,et al.  Martensite → austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel , 2011 .

[72]  P. Lukas,et al.  Austenite content and dislocation density in electron-beam welds of a stainless maraging steel , 1996 .

[73]  H. Leitner,et al.  Splitting phenomenon in the precipitation evolution in an Fe–Ni–Al–Ti–Cr stainless steel , 2010 .

[74]  D. Matlock,et al.  Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel , 2011 .

[75]  P. Rivera-Díaz-del-Castillo,et al.  A model for the microstructure behaviour and strength evolution in lath martensite , 2015 .

[76]  P. Pareige,et al.  Atomic Level Characterization of Neutron Irradiated Pressure Vessel Steels , 2001 .

[77]  V. Kain,et al.  Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainlesssteel , 2013 .

[78]  H. Lee,et al.  Precipitation and fracture behaviour of Fe–Mn–Ni–Al alloys , 2013 .

[79]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[80]  T. Takaki,et al.  Phase-Field Simulation of Austenite to Ferrite Transformation and Widmanstätten Ferrite Formation in Fe-C Alloy , 2006 .

[81]  L. Du,et al.  The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel , 2015 .

[82]  S. J. Rothman,et al.  The Diffusion of Copper in Iron , 1968 .

[83]  H. Aaronson,et al.  The kinetics of ferrite nucleation at austenite grain boundaries in Fe-C alloys , 1988 .

[84]  A. Khachaturyan,et al.  The microstructure of lath martensite in quenched 9Ni steel , 2014 .

[85]  Morris Cohen,et al.  A general mechanism of martensitic nucleation: Part III. Kinetics of martensitic nucleation , 1976 .

[86]  J. Ågren,et al.  The phase-field approach and solute drag modeling of the transition to massive γ → α transformation in binary Fe-C alloys , 2003 .

[87]  P. Fratzl,et al.  Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I. – Theory , 2004 .

[88]  E. Pereloma,et al.  Diffusionless transformations, high strength steels, modelling and advanced analytical techniques , 2012 .

[89]  T. Furuhara,et al.  Correlation between the intergranular brittleness and precipitation reactions during isothermal aging of an Fe–Ni–Mn maraging steel , 2008 .

[90]  D. Isheim,et al.  Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel , 2014 .

[91]  S. Takaki,et al.  Reversion Mechanism from Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless Steels. , 1991 .

[92]  S. Zwaag,et al.  A strain-based computational design of creep-resistant steels , 2014 .

[93]  R. Honeycombe Steels, Microstructure and Properties , 1982 .

[94]  H. Abreu,et al.  Study of the austenite quantification by X-ray diffraction in the 18Ni-Co-Mo-Ti maraging 300 steel , 2006 .

[95]  W. M. Rainforth,et al.  Microstructural evolution of Mn-based maraging steels and their influences on mechanical properties , 2016 .

[96]  G. B. Olson,et al.  A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation , 1976 .