On the formation and stability of dislocation patterns—III: Three-dimensional considerations

Abstract By distinguishing among mobile and immobile dislocations and operating within the framework of continuum mechanics it is possible to derive a set of partial differential equations of the diffusion-reaction type for the evolution of dislocation species. On examining the competition between gradient dependent terms modelling the motion of dislocations and nonlinear terms modelling their interactions, it is shown that stable solutions are possible. The wavelength turns out to be a material property in agreement with observations. The discussion is limited to one dimension, that is to glide of straight dislocations in the slip direction, and the model corresponds physically to the ladder-like structure of persistent slip bands.

[1]  E. Aifantis On the Mechanics of Modulated Structures , 1984 .

[2]  P. Gillis,et al.  The influence of a limiting dislocation flux on the mechanical response of polycrystalline metals , 1974 .

[3]  D. L. Holt,et al.  Dislocation Cell Formation in Metals , 1970 .

[4]  G. Dewel,et al.  Layered structures in twodimensional nonequilibrium systems , 1981 .

[5]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[6]  Elias C. Aifantis,et al.  A proposal for continuum with microstructure , 1978 .

[7]  Valery L. Pokrovsky,et al.  Properties of ordered, continuously degenerate systems , 1979 .

[8]  H. Mughrabi,et al.  Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities , 1979 .

[9]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[10]  B. A. Huberman,et al.  Long-time behavior of Ginzburg-Landau systems far from equilibrium , 1981 .

[11]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[12]  K. Herz,et al.  Persistent Slipbands in Fatigued Face-Centered and Body-Centered Cubic Metals , 1979 .

[13]  B. A. Huberman,et al.  Striations in chemical reactions , 1976 .

[14]  H. Fujita,et al.  Dislocation behaviour and the formation of persistent slip bands in fatigued copper single crystals observed by high-voltage electron microscopy , 1983 .

[15]  James S. Langer,et al.  Propagating pattern selection , 1983 .

[16]  J. Langer,et al.  New computational method in the theory of spinodal decomposition , 1975 .

[17]  K. Binder,et al.  On the theory of spinodal decomposition in solid and liquid binary mixtures , 1978 .

[18]  N. Thompson,et al.  Xi. The origin of fatigue fracture in copper , 1956 .

[19]  Elias C. Aifantis,et al.  On a proposal for a continuum with microstructure , 1982 .

[20]  Peter P. Gillis,et al.  Dynamical Dislocation Theory of Crystal Plasticity. I. The Yield Stress , 1965 .

[21]  G. Dewel,et al.  Nonequilibrium phase transitions and chemical instabilities , 1981 .

[22]  D. F. Stein,et al.  Mobility of Edge Dislocations in Silicon‐Iron Crystals , 1960 .

[23]  G. Ahlers,et al.  Vortex-Front Propagation in Rotating Couette-Taylor Flow , 1983 .

[24]  W. Nix,et al.  An Analysis of the Thermodynamics of Dislocation Glide , 1969 .