Predicting hydration Gibbs energies of alkyl-aromatics using molecular simulation: a comparison of current force fields and the development of a new parameter set for accurate solvation data.

The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.

[1]  Jed W. Pitera,et al.  A Comparison of Non-Bonded Scaling Approaches for Free Energy Calculations , 2002 .

[2]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[3]  David L Mobley,et al.  Small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations. , 2009, Journal of chemical theory and computation.

[4]  Andrew D. Hamilton,et al.  Aromatic-aromatic interactions in molecular recognition: a family of artificial receptors for thymine that shows both face-to-face and edge-to-face orientations , 1988 .

[5]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[6]  Christophe Chipot,et al.  Good practices in free-energy calculations. , 2010, The journal of physical chemistry. B.

[7]  J. Ilja Siepmann,et al.  TRANSFERABLE POTENTIALS FOR PHASE EQUILIBRIA. 3. EXPLICIT-HYDROGEN DESCRIPTION OF NORMAL ALKANES , 1999 .

[8]  J. Ilja Siepmann,et al.  Monte Carlo Calculations for Alcohols and Their Mixtures with Alkanes. Transferable Potentials for Phase Equilibria. 5. United-Atom Description of Primary, Secondary, and Tertiary Alcohols , 2001 .

[9]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[10]  David L. Mobley,et al.  Chapter 4 Alchemical Free Energy Calculations: Ready for Prime Time? , 2007 .

[11]  Ioannis G. Economou,et al.  Molecular simulation of absolute hydration Gibbs energies of polar compounds , 2010 .

[12]  John B. O. Mitchell,et al.  Predicting intrinsic aqueous solubility by a thermodynamic cycle. , 2008, Molecular pharmaceutics.

[13]  Hans W. Horn,et al.  Accounting for polarization cost when using fixed charge force fields. I. Method for computing energy. , 2010, The journal of physical chemistry. B.

[14]  William L. Jorgensen,et al.  OPLS ALL-ATOM MODEL FOR AMINES : RESOLUTION OF THE AMINE HYDRATION PROBLEM , 1999 .

[15]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[16]  Arieh Warshel,et al.  A local reaction field method for fast evaluation of long‐range electrostatic interactions in molecular simulations , 1992 .

[17]  W L Jorgensen,et al.  Prediction of drug solubility from Monte Carlo simulations. , 2000, Bioorganic & medicinal chemistry letters.

[18]  David L Mobley,et al.  Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. , 2007, The journal of physical chemistry. B.

[19]  F. Weinhold,et al.  Natural population analysis , 1985 .

[20]  Sture Nordholm,et al.  In silico prediction of drug solubility: 1. Free energy of hydration. , 2007, The journal of physical chemistry. B.

[21]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[22]  Neeraj Rai,et al.  Transferable potentials for phase equilibria. 9. Explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds. , 2007, The journal of physical chemistry. B.

[23]  Miguel Jorge,et al.  1-Octanol/Water Partition Coefficients of n-Alkanes from Molecular Simulations of Absolute Solvation Free Energies. , 2009, Journal of chemical theory and computation.

[24]  J. Gomes,et al.  Density functional theory study on the thermodynamic properties of aminophenols , 2005 .

[25]  Christopher A. Hunter,et al.  Meldola Lecture. The role of aromatic interactions in molecular recognition , 1994 .

[26]  T. Takagi,et al.  P−ρ−T Data of Liquids: Summarization and Evaluation. 5. Aromatic Hydrocarbons , 1999 .

[27]  Gerhard Hummer,et al.  Free Energy of Ionic Hydration , 1996 .

[28]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[29]  W. Sherman,et al.  Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. , 2010, Journal of chemical theory and computation.

[30]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[31]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[32]  L. Bartell,et al.  Electron diffraction and Monte Carlo studies of liquids. 3. Supercooled benzene , 1988 .

[33]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[34]  M. Newton,et al.  Continuum level treatment of electronic polarization in the framework of molecular simulations of solvation effects , 2003 .

[35]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[36]  Ioannis G. Economou,et al.  Molecular simulation of the hydration Gibbs energy of barbiturates , 2010 .

[37]  William L. Jorgensen,et al.  Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene , 1990 .

[38]  William L. Jorgensen,et al.  Accuracy of free energies of hydration using CM1 and CM3 atomic charges , 2004, J. Comput. Chem..

[39]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[40]  Pedro C. Gómez,et al.  Atomic charges in conformers of gaseous glycine , 2001 .

[41]  J. Guthrie,et al.  A blind challenge for computational solvation free energies: introduction and overview. , 2009, The journal of physical chemistry. B.

[42]  Ulf Ryde,et al.  Comparison of methods for deriving atomic charges from the electrostatic potential and moments , 1998 .

[43]  A. Stuchebrukhov,et al.  Accounting for electronic polarization in non-polarizable force fields. , 2011, Physical chemistry chemical physics : PCCP.

[44]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[45]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[46]  Hans W. Horn,et al.  Accounting for polarization cost when using fixed charge force fields. II. Method and application for computing effect of polarization cost on free energy of hydration. , 2010, The journal of physical chemistry. B.

[47]  Ioannis G. Economou,et al.  Effect of the integration method on the accuracy and computational efficiency of free energy calculations using thermodynamic integration , 2010 .

[48]  Benoît Roux,et al.  Hydration of Amino Acid Side Chains: Nonpolar and Electrostatic Contributions Calculated from Staged Molecular Dynamics Free Energy Simulations with Explicit Water Molecules , 2004 .

[49]  A. Stuchebrukhov,et al.  Electronic Polarizability and the Effective Pair Potentials of Water. , 2010, Journal of chemical theory and computation.

[50]  E. Macedo,et al.  Using molecular simulation to predict solute solvation and partition coefficients in solvents of different polarity. , 2011, Physical chemistry chemical physics : PCCP.

[51]  D. Beveridge,et al.  Free energy via molecular simulation: applications to chemical and biomolecular systems. , 1989, Annual review of biophysics and biophysical chemistry.

[52]  Peter M. Kasson,et al.  Gromacs User Manual Version 4.6 , 2013 .

[53]  Herman J. C. Berendsen,et al.  ALGORITHMS FOR BROWNIAN DYNAMICS , 1982 .

[54]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[55]  M. Gilson,et al.  Calculation of protein-ligand binding affinities. , 2007, Annual review of biophysics and biomolecular structure.

[56]  Kenneth B. Wiberg,et al.  Comparison of atomic charges derived via different procedures , 1993, J. Comput. Chem..

[57]  M. Cordeiro,et al.  Gas-phase molecular structure and energetics of anionic silicates , 2008 .

[58]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[59]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[60]  A. Stuchebrukhov,et al.  Electronic continuum model for molecular dynamics simulations of biological molecules. , 2010, Journal of chemical theory and computation.

[61]  A. Stuchebrukhov,et al.  Electronic continuum model for molecular dynamics simulations. , 2009, The Journal of chemical physics.

[62]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[63]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[64]  Michael R. Shirts,et al.  Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. , 2005, The Journal of chemical physics.

[65]  Wilfred F van Gunsteren,et al.  Biomolecular modeling: Goals, problems, perspectives. , 2006, Angewandte Chemie.

[66]  Pavel Hobza,et al.  Structure and Properties of Benzene-Containing Molecular Clusters - Nonempirical Ab-Initio Calculations and Experiments , 1994 .

[67]  A. Narten,et al.  X‐ray diffraction pattern and models of liquid benzene , 1977 .

[68]  Revised Charge Equilibration Parameters for More Accurate Hydration Free Energies of Alkanes. , 2010, Chemical physics letters.

[69]  H. Berendsen,et al.  A LEAP-FROG ALGORITHM FOR STOCHASTIC DYNAMICS , 1988 .

[70]  X. Daura,et al.  Parametrization of aliphatic CHn united atoms of GROMOS96 force field , 1998 .

[71]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[72]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[73]  T. Benzing,et al.  Recognition and transport of adenine derivatives with synthetic receptors. , 1988, Science.

[74]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[75]  Georgios C. Boulougouris,et al.  Engineering a Molecular Model for Water Phase Equilibrium over a Wide Temperature Range , 1998 .

[76]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[77]  J. Gomes Theoretical study on the stability of formylphenol and formylaniline compounds and corresponding radicals: O-H or N-H vs C-H bond dissociation. , 2009, The journal of physical chemistry. A.

[78]  W. Goddard,et al.  Thermodynamics of liquids: standard molar entropies and heat capacities of common solvents from 2PT molecular dynamics. , 2011, Physical chemistry chemical physics : PCCP.

[79]  Greg L. Hura,et al.  Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. , 2004, The Journal of chemical physics.

[80]  J. Ilja Siepmann,et al.  Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes , 1999 .

[81]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[82]  B. Hess,et al.  Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models. , 2006, The journal of physical chemistry. B.

[83]  William L Jorgensen,et al.  Perspective on Free-Energy Perturbation Calculations for Chemical Equilibria. , 2008, Journal of chemical theory and computation.