State feedback design for input-saturating quadratic systems
暂无分享,去创建一个
Sophie Tarbouriech | Germain Garcia | Giorgio Valmorbida | G. Valmórbida | G. García | S. Tarbouriech
[1] Franco Blanchini,et al. Set invariance in control , 1999, Autom..
[2] E. D. Klerk,et al. Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .
[3] Sophie Tarbouriech,et al. Stability analysis and stabilization of systems presenting nested saturations , 2006, IEEE Transactions on Automatic Control.
[4] Naomi Ehrich Leonard,et al. Proceedings Of The 2000 American Control Conference , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[5] Sophie Tarbouriech,et al. Advanced strategies in control systems with input and output constraints , 2007 .
[6] C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .
[7] Sophie Tarbouriech,et al. State feedback design for input-saturating nonlinear quadratic systems , 2009, 2009 American Control Conference.
[8] Tingshu Hu,et al. Control Systems with Actuator Saturation: Analysis and Design , 2001 .
[9] Graziano Chesi,et al. Computing output feedback controllers to enlarge the domain of attraction in polynomial systems , 2004, IEEE Transactions on Automatic Control.
[10] Vijay Vittal,et al. Application of the normal form of vector fields to predict interarea separation in power systems , 1997 .
[11] Karolos M. Grigoriadis,et al. Actuator saturation control , 2002 .
[12] A. Vicino,et al. On the estimation of asymptotic stability regions: State of the art and new proposals , 1985 .
[13] Ram Rup Sarkar,et al. Cancer self remission and tumor stability-- a stochastic approach. , 2005, Mathematical biosciences.
[14] Daniel E. Koditschek,et al. The Stability of Second Order Quadratic Differential Equations. Part III , 1978 .
[15] Francesco Amato,et al. Output feedback control of nonlinear quadratic systems , 2007, 49th IEEE Conference on Decision and Control (CDC).
[16] Carlo Cosentino,et al. On the region of attraction of nonlinear quadratic systems , 2007, Autom..
[17] A. Garulli,et al. LMI‐based computation of optimal quadratic Lyapunov functions for odd polynomial systems , 2005 .
[18] Dennis S. Bernstein. A plant taxonomy for designing control experiments , 2001 .