State feedback design for input-saturating quadratic systems

This paper proposes a method to design stabilizing state feedback control laws for nonlinear quadratic systems subject to input saturation. Based on a quadratic Lyapunov function, a modified sector condition and a particular representation for the quadratic terms, synthesis conditions in a ''quasi''-LMI form are stated in a regional (local) context. An LMI-based optimization problem is then derived for computing the state feedback gains maximizing the estimate of the stability region of the closed-loop system.

[1]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[2]  E. D. Klerk,et al.  Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .

[3]  Sophie Tarbouriech,et al.  Stability analysis and stabilization of systems presenting nested saturations , 2006, IEEE Transactions on Automatic Control.

[4]  Naomi Ehrich Leonard,et al.  Proceedings Of The 2000 American Control Conference , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[5]  Sophie Tarbouriech,et al.  Advanced strategies in control systems with input and output constraints , 2007 .

[6]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[7]  Sophie Tarbouriech,et al.  State feedback design for input-saturating nonlinear quadratic systems , 2009, 2009 American Control Conference.

[8]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[9]  Graziano Chesi,et al.  Computing output feedback controllers to enlarge the domain of attraction in polynomial systems , 2004, IEEE Transactions on Automatic Control.

[10]  Vijay Vittal,et al.  Application of the normal form of vector fields to predict interarea separation in power systems , 1997 .

[11]  Karolos M. Grigoriadis,et al.  Actuator saturation control , 2002 .

[12]  A. Vicino,et al.  On the estimation of asymptotic stability regions: State of the art and new proposals , 1985 .

[13]  Ram Rup Sarkar,et al.  Cancer self remission and tumor stability-- a stochastic approach. , 2005, Mathematical biosciences.

[14]  Daniel E. Koditschek,et al.  The Stability of Second Order Quadratic Differential Equations. Part III , 1978 .

[15]  Francesco Amato,et al.  Output feedback control of nonlinear quadratic systems , 2007, 49th IEEE Conference on Decision and Control (CDC).

[16]  Carlo Cosentino,et al.  On the region of attraction of nonlinear quadratic systems , 2007, Autom..

[17]  A. Garulli,et al.  LMI‐based computation of optimal quadratic Lyapunov functions for odd polynomial systems , 2005 .

[18]  Dennis S. Bernstein A plant taxonomy for designing control experiments , 2001 .