Effect of inhomogeneous microstructure on the deformation and fracture mechanisms of 316LN stainless steel multi-pass weld joint using small punch test

[1]  E. Han,et al.  Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment , 2020 .

[2]  V. Kain,et al.  Detection of embrittlement in low alloy steels due to thermal aging by small punch test , 2019, Materials Science and Engineering: A.

[3]  J. Szpunar,et al.  A procedure for predicting strength properties using small punch test and finite element simulation , 2019, International Journal of Mechanical Sciences.

[4]  Tingguang Liu,et al.  In-situ SEM study of crack initiation and propagation behavior in a dissimilar metal welded joint , 2018, Materials Science and Engineering: A.

[5]  Jinna Mei,et al.  Microstructure and corrosion behavior of the heat affected zone of a stainless steel 308L-316L weld joint , 2017, Journal of Materials Science & Technology.

[6]  B. Mittelman,et al.  Estimation of yield and ultimate stress using the small punch test method applied to non-standard specimens: A computational study validated by experiments , 2018 .

[7]  Lei Wang,et al.  Environmentally assisted crack growth in 308L stainless steel weld metal in simulated primary water , 2017 .

[8]  Kai Chen,et al.  Fracture toughness of type 316LN stainless steel welded joints , 2017 .

[9]  Pradeep Kumar,et al.  On the correlation between minimum thickness and central deflection during small punch test , 2016 .

[10]  Lei Wang,et al.  Stress corrosion cracking in the heat affected zone of a stainless steel 308L-316L weld joint in primary water , 2016 .

[11]  Guodong Zhang,et al.  In-situ SEM study of short fatigue crack propagation behavior in a dissimilar metal welded joint of nuclear power plant , 2015 .

[12]  E. Han,et al.  Microstructure Characterization of the Fusion Zone of an Alloy 600-82 Weld Joint , 2015 .

[13]  J. Tucker,et al.  Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications , 2015 .

[14]  B. Arroyo,et al.  Development of a methodology to study the hydrogen embrittlement of steels by means of the small punch test , 2015 .

[15]  Y. Takeda,et al.  Effects of water chemistry on stress corrosion cracking of 316NG weld metals in high temperature water , 2015 .

[16]  M. D. Mathew,et al.  Microstructural evolution during creep of 316LN stainless steel multi-pass weld joints , 2014 .

[17]  Ming Song,et al.  Size effect criteria on the small punch test for AISI 316L austenitic stainless steel , 2014 .

[18]  C. Suárez,et al.  Estimation of the mechanical properties of metallic materials by means of the small punch test , 2014 .

[19]  N. Coniglio,et al.  Initiation and growth mechanisms for weld solidification cracking , 2013 .

[20]  Steven J. Zinkle,et al.  Materials Challenges in Nuclear Energy , 2013 .

[21]  H. Abe,et al.  Role of δ-ferrite in stress corrosion cracking retardation near fusion boundary of 316NG welds , 2012 .

[22]  Y. Takeda,et al.  Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint , 2010 .

[23]  K. Yoon,et al.  Assessment of tensile strength using small punch test for transversely isotropic aluminum 2024 alloy produced by equal channel angular pressing , 2010 .

[24]  H. S. Khatak,et al.  Effect of metallurgical variables on the stress corrosion crack growth behaviour of AISI type 316LN stainless steel , 2010 .

[25]  Seung Jin Oh,et al.  Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds , 2010 .

[26]  Joseph K. L. Lai,et al.  Recent developments in stainless steels , 2009 .

[27]  Maxence Bigerelle,et al.  Assessment of the constitutive law by inverse methodology: Small punch test and hardness , 2006 .

[28]  K. B. S. Rao,et al.  High temperature, low cycle fatigue behaviour of AISI type 316LN base metal, 316LN-316 weld joint and 316 all-weld metal , 1992 .

[29]  J. Brooks,et al.  Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds , 1991 .

[30]  J. M. Vitek,et al.  Correlation between solidification parameters and weld microstructures , 1989 .

[31]  S. Keown,et al.  Role of delta ferrite in thermal aging of type 316 weld metals , 1981 .

[32]  S. David,et al.  Ferrite morphology and variations in ferrite content in austenitic stainless steel welds , 1981 .

[33]  N. Suutala,et al.  Ferritic-austenitic solidification mode in austenitic stainless steel welds , 1980 .

[34]  T. Takalo,et al.  Austenitic solidification mode in austenitic stainless steel welds , 1979 .

[35]  W. Delong,et al.  FERRITE IN AUSTENITIC STAINLESS STEEL WELD METAL , 1974 .