An updated treatment of soil texture and associated hydraulic properties in a global land modeling system

The advent of new data sets describing soil texture and associated soil properties offers the promise of improved hydrological simulation. Here we describe the composition of a new soil texture data set and its implementation into a specific land surface modeling system, namely, the Catchment land surface model (LSM) of the NASA Goddard Earth Observing System version 5 (GEOS-5) modeling and assimilation framework. First, global soil texture composites are generated using data from the Harmonized World Soil Database version 1.21 (HWSD1.21) and the State Soil Geographic (STATSGO2) project, with explicit consideration of different levels of organic material. Then, the LSM's soil parameters are upgraded using the new texture data, with hydraulic parameters derived for the more extensive set of texture classes using pedotransfer functions. Other changes to the LSM parameters are included to further support simulations at increasingly fine resolutions. A suite of simulations with the original and new parameter versions shows modest yet significant improvements in the Catchment LSM's simulation of soil moisture and surface hydrological fluxes. The revised LSM parameters will be used for the forthcoming Soil Moisture Active Passive (SMAP) soil moisture assimilation product.

[1]  Taikan Oki,et al.  The Second Global Soil Wetness Project (GSWP-2) , 2003 .

[2]  Keith Beven,et al.  On hydrologic similarity: 2. A scaled model of storm runoff production , 1987 .

[3]  David M. Lawrence,et al.  Incorporating organic soil into a global climate model , 2008 .

[4]  Jesse,et al.  U.S. Climate Reference Network after One Decade of Operations: Status and Assessment , 2013 .

[5]  Helge Bormann,et al.  Towards a hydrologically motivated soil texture classification , 2010 .

[6]  Gianpaolo Balsamo,et al.  A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data , 2012 .

[7]  Dara Entekhabi,et al.  An alternate and robust approach to calibration for the estimation of land surface model parameters based on remotely sensed observations , 2011 .

[8]  B. Kay,et al.  Sensitivity of soil structure to changes in organic carbon content: Predictions using pedotransfer functions , 1997 .

[9]  Walter J. Rawls,et al.  Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics , 2001 .

[10]  G. Hornberger,et al.  A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils , 1984 .

[11]  Eric F. Wood,et al.  Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA , 2010 .

[12]  W. Rawls,et al.  Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions , 2006 .

[13]  Kenneth W. Harrison,et al.  Quantifying the change in soil moisture modeling uncertainty from remote sensing observations using Bayesian inference techniques , 2012 .

[14]  Praveen Kumar,et al.  A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure , 2000 .

[15]  Niko E. C. Verhoest,et al.  Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[17]  M. Gribb,et al.  Hydraulic Conductivity Prediction for Sandy Soils , 2004, Ground water.

[18]  G. Heathman,et al.  Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation , 2006 .

[19]  D. Verseghy,et al.  Parametrization of peatland hydraulic properties for the Canadian land surface scheme , 2000, Data, Models and Analysis.

[20]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[21]  G. Bakker,et al.  Waterretentie- en doorlatendheidskarakteristieken van boven- en ondergronden in Nederland: de Staringreeks : Update 2018 , 1986 .

[22]  A. Arneth,et al.  Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations , 2011 .

[23]  Thomas J. Jackson,et al.  Estimating soil water‐holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions , 2000 .

[24]  Thomas J. Jackson,et al.  Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[25]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[26]  Anne Verhoef,et al.  New soil physical properties implemented in the Unified Model at PS18 , 2009 .

[27]  D. Vries Thermal properties of soils , 1963 .

[28]  P. Dirmeyer Using a global soil wetness dataset to improve seasonal climate simulation , 2000 .

[29]  R. Koster,et al.  Land Surface Controls on Hydroclimatic Means and Variability , 2012 .

[30]  J. Dam,et al.  Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity , 2009 .

[31]  M. S. Moran,et al.  Using remotely-sensed estimates of soil moisture to infer soil texture and hydraulic properties across a semi-arid watershed , 2007 .

[32]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[33]  J. Wösten,et al.  Development and use of a database of hydraulic properties of European soils , 1999 .

[34]  Praveen Kumar,et al.  A Catchment-Based Approach to Modeling Land Surface Processes in a Gcm, Part 2: Parameter Estimation and Model Demonstration , 2013 .

[35]  M. Best,et al.  Revisiting GLACE: Understanding the Role of the Land Surface in Land–Atmosphere Coupling , 2012 .

[36]  V. R. Tarnawski,et al.  Evaluation of Pedo-transfer Functions For Unsaturated Soil Hydraulic , 2001 .

[37]  Wade T. Crow,et al.  Performance Metrics for Soil Moisture Retrievals and Application Requirements , 2009 .

[38]  R. Koster,et al.  Assessment and Enhancement of MERRA Land Surface Hydrology Estimates , 2011 .

[39]  T. Jackson,et al.  Temporal persistence and stability of surface soil moisture in a semi-arid watershed , 2008 .

[40]  Y. Pachepsky,et al.  Effect of soil organic carbon on soil water retention , 2003 .

[41]  W. Post,et al.  The Unified North American Soil Map and its implication on the soil organic carbon stock in North America , 2012 .

[42]  Baoyuan Liu,et al.  Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling , 2013 .

[43]  G. Lannoy,et al.  Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over Nonfrozen Land Using SMOS Observations , 2013 .

[44]  B. Hurk,et al.  A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System , 2009 .

[45]  Klaas Oostindie,et al.  The effect of soil texture and organic amendment on the hydrological behaviour of coarse‐textured soils , 2009 .

[46]  Dennis P. Lettenmaier,et al.  Soil Moisture, Snow, and Seasonal Streamflow Forecasts in the United States , 2012 .

[47]  W. Rawls,et al.  Estimation of Soil Water Retention and Hydraulic Properties , 1989 .

[48]  John Kochendorfer,et al.  U.S. Climate Reference Network Soil Moisture and Temperature Observations , 2013 .

[49]  N. Verhoest,et al.  Impact of soil hydraulic parameter uncertainty on soil moisture modeling , 2011 .

[50]  Hua Yuan,et al.  A global soil data set for earth system modeling , 2014 .

[51]  Neil McKenzie,et al.  Soil Physical Measurement and Interpretation for Land Evaluation , 2002 .

[52]  Randal D. Koster,et al.  On the Nature of Soil Moisture in Land Surface Models , 2009 .

[53]  Arnaud Mialon,et al.  The SMOS Soil Moisture Retrieval Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Venkat Lakshmi,et al.  Advances in downscaling soil moisture for use in drought and flood assessments: Implications for data from the Soil Moisture Active and Passive (SMAP) Mission , 2015 .

[55]  A. B. Smith,et al.  The Murrumbidgee soil moisture monitoring network data set , 2012 .

[56]  Dennis P. Lettenmaier,et al.  A TEST BED FOR NEW SEASONAL HYDROLOGIC FORECASTING APPROACHES IN THE WESTERN UNITED STATES , 2006 .

[57]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[58]  N. Batjes ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid (ver. 1.2) , 2006 .

[59]  D. L. Brakensiek,et al.  Estimation of Soil Water Properties , 1982 .

[60]  Gaylon S. Campbell,et al.  A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA , 1974 .

[61]  R. McCuen,et al.  Statistical analysis of the Brooks-Corey and the Green-Ampt parameters across soil textures , 1981 .

[62]  R. Koster,et al.  A catchment-based approach to modeling land surface processes in a general circulation model , 2000 .

[63]  T. Jackson,et al.  The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN) , 2007 .

[64]  C. Adam Schlosser,et al.  Assessing Evapotranspiration Estimates from the Second Global Soil Wetness Project (GSWP-2) Simulations , 2010 .

[65]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[66]  Alfred E. Hartemink,et al.  Predicting soil properties in the tropics , 2011 .

[67]  Rolf H. Reichle,et al.  Connecting Satellite Observations with Water Cycle Variables Through Land Data Assimilation: Examples Using the NASA GEOS-5 LDAS , 2013, Surveys in Geophysics.