100 years of Weyl’s law
暂无分享,去创建一个
[1] S. Warzel,et al. QUASI-CLASSICAL VERSUS NON-CLASSICAL SPECTRAL ASYMPTOTICS FOR MAGNETIC SCHRÖDINGER OPERATORS WITH DECREASING ELECTRIC POTENTIALS , 2002, math-ph/0201006.
[2] Serge Levendorskiĭ. Asymptotic Distribution of Eigenvalues of Differential Operators , 1990 .
[3] Wolfgang Arendt,et al. Weyl's Law: Spectral Properties of the Laplacian in Mathematics and Physics , 2009 .
[4] V. Guillemin,et al. The spectrum of positive elliptic operators and periodic bicharacteristics , 1975 .
[5] Mikhail Shubin. Asymptotic Behaviour of the Spectral Function , 2001 .
[6] H. Weyl. Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung. , 1912 .
[7] On the Spectral Properties of the Perturbed Landau Hamiltonian , 2006, math-ph/0605038.
[8] T. Suslina,et al. Spectral theory of differential operators , 1995 .
[9] V. Avakumović. Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten , 1956 .
[10] R. Courant. Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik , 1920 .
[11] Yu Safarov,et al. The Asymptotic Distribution of Eigenvalues of Partial Differential Operators , 1996 .
[12] J. P. Solovej,et al. A CORRELATION ESTIMATE WITH APPLICATIONS TO QUANTUM SYSTEMS WITH COULOMB INTERACTIONS , 1994 .
[13] H. Weyl. Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgesetze. , 1913 .
[14] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[15] H. Weyl. Ramifications, old and new, of the eigenvalue problem , 1950 .
[16] R. Seeley,et al. A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3 , 1978 .
[17] Volker Bach,et al. Error bound for the Hartree-Fock energy of atoms and molecules , 1992 .
[18] H. Weyl. Ueber die asymptotische Verteilung der Eigenwerte , 1911 .
[19] Eigenvalue asymptotics for the pauli operator in strong nonconstant magnetic fields , 1999 .
[20] H. Weyl,et al. Das asymptotische verteilungsgesetz der eigenschwingungen eines beliebig gestalteten elastischen körpers , 1915 .
[21] M. Šubin,et al. ON ASYMPTOTIC DISTRIBUTION OF EIGENVALUES OF PSEUDODIFFERENTIAL OPERATORS IN $ \mathbf R^n$ , 1973 .
[22] W. Thirring. The stability of matter: From atoms to stars : selecta of Elliott H. Lieb , 1991 .
[23] V. Ya. Ivrii,et al. Second term of the spectral asymptotic expansion of the Laplace - Beltrami operator on manifolds with boundary , 1980 .
[24] L. Hörmander,et al. THE ASYMPTOTIC DISTRIBUTION OF EIGENVALUES OF PARTIAL DIFFERENTIAL OPERATORS (Translations of Mathematical Monographs 155) , 1998 .
[25] V. Ivrii. Microlocal Analysis and Precise Spectral Asymptotics , 1998 .
[26] Elliott H. Lieb,et al. Asymptotics of heavy atoms in high magnetic fields: I. Lowest landau band regions , 1994 .
[27] Accurate spectral asymptotics for elliptic operators that act in vector bundles , 1982 .
[28] Eigenvalue Asymptotics for Weakly Perturbed Dirac and Schrödinger Operators with Constant Magnetic Fields of Full Rank , 2003 .
[29] Eigenvalue asymptotics for the schrodinger operator in strong constant magnetic fields , 1998 .
[30] B. Levitan. ASYMPTOTIC BEHAVIOUR OF THE SPECTRAL FUNCTION OF AN ELLIPTIC EQUATION , 1971 .
[31] L. Hörmander,et al. The spectral function of an elliptic operator , 1968 .
[32] E. Lieb,et al. Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions , 1994 .
[33] N. Nadirashvili,et al. Negative Eigenvalues of Two-Dimensional Schrödinger Operators , 2011, 1112.4986.
[35] E. Shargorodsky,et al. On negative eigenvalues of two‐dimensional Schrödinger operators , 2012, Journal of Mathematical Physics.
[36] R. Seeley,et al. AN ESTIMATE NEAR THE BOUNDARY FOR THE SPECTRAL FUNCTION OF THE LAPLACE OPERATOR , 1980 .
[37] H. Weyl. Quantenmechanik und Gruppentheorie , 1927 .