100 years of Weyl’s law

We discuss the asymptotics of the eigenvalue counting function for partial differential operators and related expressions paying the most attention to the sharp asymptotics. We consider Weyl asymptotics, asymptotics with Weyl principal parts and correction terms and asymptotics with non-Weyl principal parts. Semiclassical microlocal analysis, propagation of singularities and related dynamics play crucial role. We start from the general theory, then consider Schrödinger and Dirac operators with the strong magnetic field and, finally, applications to the asymptotics of the ground state energy of heavy atoms and molecules with or without a magnetic field.

[1]  S. Warzel,et al.  QUASI-CLASSICAL VERSUS NON-CLASSICAL SPECTRAL ASYMPTOTICS FOR MAGNETIC SCHRÖDINGER OPERATORS WITH DECREASING ELECTRIC POTENTIALS , 2002, math-ph/0201006.

[2]  Serge Levendorskiĭ Asymptotic Distribution of Eigenvalues of Differential Operators , 1990 .

[3]  Wolfgang Arendt,et al.  Weyl's Law: Spectral Properties of the Laplacian in Mathematics and Physics , 2009 .

[4]  V. Guillemin,et al.  The spectrum of positive elliptic operators and periodic bicharacteristics , 1975 .

[5]  Mikhail Shubin Asymptotic Behaviour of the Spectral Function , 2001 .

[6]  H. Weyl Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung. , 1912 .

[7]  On the Spectral Properties of the Perturbed Landau Hamiltonian , 2006, math-ph/0605038.

[8]  T. Suslina,et al.  Spectral theory of differential operators , 1995 .

[9]  V. Avakumović Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten , 1956 .

[10]  R. Courant Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik , 1920 .

[11]  Yu Safarov,et al.  The Asymptotic Distribution of Eigenvalues of Partial Differential Operators , 1996 .

[12]  J. P. Solovej,et al.  A CORRELATION ESTIMATE WITH APPLICATIONS TO QUANTUM SYSTEMS WITH COULOMB INTERACTIONS , 1994 .

[13]  H. Weyl Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgesetze. , 1913 .

[14]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[15]  H. Weyl Ramifications, old and new, of the eigenvalue problem , 1950 .

[16]  R. Seeley,et al.  A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3 , 1978 .

[17]  Volker Bach,et al.  Error bound for the Hartree-Fock energy of atoms and molecules , 1992 .

[18]  H. Weyl Ueber die asymptotische Verteilung der Eigenwerte , 1911 .

[19]  Eigenvalue asymptotics for the pauli operator in strong nonconstant magnetic fields , 1999 .

[20]  H. Weyl,et al.  Das asymptotische verteilungsgesetz der eigenschwingungen eines beliebig gestalteten elastischen körpers , 1915 .

[21]  M. Šubin,et al.  ON ASYMPTOTIC DISTRIBUTION OF EIGENVALUES OF PSEUDODIFFERENTIAL OPERATORS IN $ \mathbf R^n$ , 1973 .

[22]  W. Thirring The stability of matter: From atoms to stars : selecta of Elliott H. Lieb , 1991 .

[23]  V. Ya. Ivrii,et al.  Second term of the spectral asymptotic expansion of the Laplace - Beltrami operator on manifolds with boundary , 1980 .

[24]  L. Hörmander,et al.  THE ASYMPTOTIC DISTRIBUTION OF EIGENVALUES OF PARTIAL DIFFERENTIAL OPERATORS (Translations of Mathematical Monographs 155) , 1998 .

[25]  V. Ivrii Microlocal Analysis and Precise Spectral Asymptotics , 1998 .

[26]  Elliott H. Lieb,et al.  Asymptotics of heavy atoms in high magnetic fields: I. Lowest landau band regions , 1994 .

[27]  Accurate spectral asymptotics for elliptic operators that act in vector bundles , 1982 .

[28]  Eigenvalue Asymptotics for Weakly Perturbed Dirac and Schrödinger Operators with Constant Magnetic Fields of Full Rank , 2003 .

[29]  Eigenvalue asymptotics for the schrodinger operator in strong constant magnetic fields , 1998 .

[30]  B. Levitan ASYMPTOTIC BEHAVIOUR OF THE SPECTRAL FUNCTION OF AN ELLIPTIC EQUATION , 1971 .

[31]  L. Hörmander,et al.  The spectral function of an elliptic operator , 1968 .

[32]  E. Lieb,et al.  Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions , 1994 .

[33]  N. Nadirashvili,et al.  Negative Eigenvalues of Two-Dimensional Schrödinger Operators , 2011, 1112.4986.

[35]  E. Shargorodsky,et al.  On negative eigenvalues of two‐dimensional Schrödinger operators , 2012, Journal of Mathematical Physics.

[36]  R. Seeley,et al.  AN ESTIMATE NEAR THE BOUNDARY FOR THE SPECTRAL FUNCTION OF THE LAPLACE OPERATOR , 1980 .

[37]  H. Weyl Quantenmechanik und Gruppentheorie , 1927 .