Synchronization and Calibration of the 24-Modules J-PET Prototype With 300-mm Axial Field of View
暂无分享,去创建一个
A. Gajos | T. Bednarski | G. Korcyl | E. Kubicz | P. Moskal | T. Kozik | P. Kowalski | K. Dulski | M. Gorgol | H. Karimi | C. Curceanu | E. Czerwiński | B. Jasińska | K. Kacprzak | N. Krawczyk | M. Mohammed | L. Raczyński | M. Skurzok | W. Wiślicki | Sz. Niedźwiecki | M. Silarski | J. Chhokar | M. Bała | R. Del Grande | M. Dadgar | N. Gupta-Sharma | B. C. Hiesmayr | Ł. Kapłon | D. Kisielewska | K. Klimaszewski | W. Krzemień | M. Pałka | M. Pawlik-Niedźwiecka | J. Raj | S. Sharma | . Shivani | R. Y. Shopa | E. Stȩpień | B. Zgardzińska | Shivani | B. Hiesmayr | A. Gajos | M. Mohammed | J. Chhokar | C. Curceanu | M. Dadgar | K. Dulski | M. Gorgol | K. Kacprzak | H. Karimi | D. Kisielewska | K. Klimaszewski | G. Korcyl | P. Kowalski | N. Krawczyk | W. Krzemień | T. Kozik | E. Kubicz | M. Pawlik-Niedzwiecka | J. Raj | R. Shopa | M. Silarski | M. Skurzok | E. Stępień | W. Wiślicki | P. Moskal | T. Bednarski | L. Kaplon | N. Gupta-Sharma | R. D. Grande | E. Czerwiński | B. Zgardzińska | L. Raczynski | Marek Palka | L. Raczyński | Sushil Sharma | M. Bala | Szymon Niedzwiecki | W. Wiślicki | B. Jasinska | M. Palka | S. Niedźwiecki
[1] Grzegorz Korcyl,et al. A compact system for high precision time measurements (< 14 ps RMS) and integrated data acquisition for a large number of channels , 2011 .
[2] Joel S. Karp,et al. State of the art in total body PET , 2020, EJNMMI Physics.
[3] A. Gajos,et al. Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA SoC Devices , 2018, IEEE Transactions on Medical Imaging.
[4] C.S. Martin,et al. Novel lead-walled straw PET detector for specialized imaging applications , 2005, IEEE Nuclear Science Symposium Conference Record, 2005.
[5] M. Palka,et al. Novel method for hit-position reconstruction using voltage signals in plastic scintillators and its application to Positron Emission Tomography , 2014, 1407.8293.
[6] J. S. Karp,et al. Recent developments in time-of-flight PET , 2016, EJNMMI Physics.
[7] B. Jasińska,et al. Positronium in medicine and biology , 2019, Nature Reviews Physics.
[8] A. Gajos,et al. Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector , 2018, The European Physical Journal C.
[9] Michael Albrow,et al. Development of Picoseconds Time of Flight Systems in Meson Test Beam Facility at Fermilab , 2010 .
[10] Jae Sung Lee,et al. Highly Integrated FPGA-Only Signal Digitization Method Using Single-Ended Memory Interface Input Receivers for Time-of-Flight PET Detectors , 2018, IEEE Transactions on Biomedical Circuits and Systems.
[11] Jae Sung Lee,et al. Time-to-Digital Converter Using a Tuned-Delay Line Evaluated in 28-, 40-, and 45-nm FPGAs , 2016, IEEE Transactions on Instrumentation and Measurement.
[12] Jae Sung Lee,et al. Dual-Phase Tapped-Delay-Line Time-to-Digital Converter With On-the-Fly Calibration Implemented in 40 nm FPGA , 2016, IEEE Transactions on Biomedical Circuits and Systems.
[13] Jerzy Smyrski,et al. A novel method based solely on field programmable gate array (FPGA) units enabling measurement of time and charge of analog signals in positron emission tomography (PET) , 2013, Bio Algorithms Med Syst..
[14] Wojciech Wislicki,et al. A novel method for calibration and monitoring of time synchronization of TOF-PET scanners by means of cosmic rays , 2014, Bio Algorithms Med Syst..
[15] Qingguo Xie,et al. A new approach for pulse processing in positron emission tomography , 2005, IEEE Transactions on Nuclear Science.
[16] A. Gajos,et al. Scatter fraction of the J-PET tomography scanner , 2016, 1602.05402.
[17] Shivani,et al. Feasibility study of the positronium imaging with the J-PET tomograph , 2018, Physics in medicine and biology.
[18] B. Hiesmayr,et al. Estimating the NEMA characteristics of the J-PET tomograph using the GATE package , 2018, Physics in medicine and biology.
[19] Pengcheng Hu,et al. First Human Imaging Studies with the EXPLORER Total-Body PET Scanner* , 2019, The Journal of Nuclear Medicine.
[20] W W Moses,et al. A Multi-Threshold Sampling Method for TOF PET Signal Processing. , 2009, Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment.
[21] M. Palka,et al. A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals , 2014, 1412.6963.
[22] A. Athanasiades,et al. A positron emission mammography system based on 4 mm straw detectors , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.
[23] M. P. Macedo,et al. RPC-PET: A New Very High Resolution PET Technology , 2004, IEEE Transactions on Nuclear Science.
[24] M. Palka,et al. Novel scintillating material 2-(4-styrylphenyl)benzoxazole for the fully digital and MRI compatible J-PET tomograph based on plastic scintillators , 2017, PloS one.
[25] Joel S Karp,et al. Total-body imaging: Transforming the role of positron emission tomography , 2017, Science Translational Medicine.
[26] A. Gajos,et al. Compressive sensing of signals generated in plastic scintillators in a novel J-PET instrument , 2015, 1503.05188.
[27] Terry Jones,et al. History and future technical innovation in positron emission tomography , 2017, Journal of medical imaging.
[28] M. Palka,et al. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph , 2016, Physics in medicine and biology.
[29] M. Demarteau,et al. Development of a 10 ps level time of flight system in the Fermilab Test Beam Facility , 2010 .
[30] A. Gajos,et al. Multiple scattering and accidental coincidences in the J-PET detector simulated using GATE package , 2015, 1502.04532.
[31] A. Gajos,et al. Overview of the software architecture and data flow for the J-PET tomography device , 2015, 1508.02451.
[32] Chin-Tu Chen,et al. Potentials of Digitally Sampling Scintillation Pulses in Timing Determination in PET , 2009, IEEE Transactions on Nuclear Science.
[33] J. Smyrski,et al. Measurement of gamma quantum interaction point in plastic scintillator with WLS strips , 2016, 1612.08571.
[34] W. Krzemie'n,et al. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement , 2017, 1707.03565.
[35] W. Moses,et al. Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care , 2018, The Journal of Nuclear Medicine.
[36] E. Stępień,et al. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. , 2020, PET clinics.
[37] W. Krzemie'n,et al. Analysis framework for the J-PET scanner , 2015, 1503.00465.
[38] Volker D. Burkert,et al. Time-of-flight resolution of scintillating counters with Burle 85001 microchannel plate photomultipliers in comparison with Hamamatsu R2083 , 2006 .
[39] Guido Germano,et al. Recent Advances and Future Progress in PET Instrumentation. , 2016, Seminars in nuclear medicine.
[40] Suleman Surti,et al. Benefit of Time-of-Flight in PET: Experimental and Clinical Results , 2008, Journal of Nuclear Medicine.
[41] Hamamatsu corporation. , 1972, Analytical chemistry.