The existence of secondary orbital interactions

B3LYP/6‐311+G** (and MP2/6‐311+G**) computations, performed for a series of Diels‐Alder (DA) reactions, confirm that the endo transition states (TS) and the related Cope‐TSs are favored energetically over the respective exo‐TSs. Likewise, the computed magnetic properties (nucleus‐independent chemical shifts and magnetic susceptibililties) of the endo‐ (as well as the Cope) TS's reveal their greater electron delocalization and greater aromaticity than the exo‐TS's. However, Woodward and Hoffmann's original example is an exception: their endo‐TS model, involving the DA reaction of a syn‐ with an anti‐butadiene (BD), actually is disfavored energetically over the corresponding exo‐TS; magnetic criteria also do not indicate the existence of SOI delocalization in either case. Instead, a strong energetic preference for endo‐TSs due to SOI is found when both BDs are in the syn conformations. This is in accord with Alder and Stein's rule of “maximum accumulation of double bonds:” both the dienophile and the diene should have syn conformations. Plots along the IRC's show that the magnetic properties typically are most strongly exalted close to the energetic TS. Because of SOI, all the points along the endo reaction coordinates are more diatropic than along the corresponding exo pathways. We find weak SOI effects to be operative in the endo‐TSs involved in the cycloadditions of cyclic alkenes, cyclopropene, aziridine, cyclobutene, and cyclopentene, with cyclopentadiene. While the endo‐TSs are only slightly lower in energy than the respective exo‐TSs, the magnetic properties of the endo‐TS's are significantly exalted over those for the exo‐TS's and the Natural Bond Orbitals indicate small stabilizing interactions between the methylene cycloalkene hydrogen orbitals (and lone pairs in case of aziridine) with π‐character and the diene π MOs. © 2006 Wiley Periodicals, Inc. J Comput Chem 2007

[1]  R. Gleiter,et al.  Regio- and stereoselectivity in Diels-Alder reactions. Theoretical considerations , 1983 .

[2]  J. M. Mellor,et al.  Stereochemistry of the Diels–Alder reaction: steric effects of the dienophile on endo-selectivity , 1974 .

[3]  D. Salahub,et al.  New algorithm for the optimization of geometries in local density functional theory , 1990 .

[4]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[5]  K. Vollhardt,et al.  Organic Chemistry: Structure and Function , 1987 .

[6]  Lionel Salem,et al.  Intermolecular orbital theory of the interaction between conjugated systems. II. Thermal and photochemical cycloadditions , 1968 .

[7]  L. Toma,et al.  An unexpected bispericyclic transition structure leading to 4+2 and 2+4 cycloadducts in the endo dimerization of cyclopentadiene. , 2002, Journal of the American Chemical Society.

[8]  R. Sustmann,et al.  Mechanistic Aspects of Diels‐Alder Reactions: A Critical Survey , 1980 .

[9]  J. A. Berson,et al.  The Correlation of Solvent Effects on the Stereoselectivities of Diels-Alder Reactions by Means of Linear Free Energy Relationships. A New Empirical Measure of Solvent Polarity , 1962 .

[10]  Roald Hoffmann,et al.  Conservation of orbital symmetry , 1968 .

[11]  K. Alder,et al.  Über den sterischen Verlauf von Dien‐Synthesen mit acyclischen Dienen. trans,trans‐, cis,trans‐ und cis, cis‐1,4‐Diphenyl‐butadien , 1951 .

[12]  L. Toma,et al.  Merging and bifurcation of 4+2 and 2+4 cycloaddition modes in the archetypal dimerization of butadiene. A case of competing bispericyclic, pericyclic and diradical paths , 2002 .

[13]  K. Houk,et al.  The Dimerization of Cyclobutadiene. An ab Initio CASSCF Theoretical Study , 1996 .

[14]  D. Suárez,et al.  Stereochemistry of the Furan−Maleic Anhydride Cycloaddition: A Theoretical Study , 2000 .

[15]  A. Ogawa,et al.  Reexamination of orbital interactions in Diels-Alder reactions , 2002 .

[16]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[17]  A. Wassermann 104. The mechanism of additions to double bonds. Part III. Molecular forces between benzoquinone and cyclopentadiene , 1936 .

[18]  P. Schleyer,et al.  IS KEKULENE REALLY SUPERAROMATIC , 1996 .

[19]  L. Toma,et al.  Classical and non-classical secondary orbital interactions and Coulombic attraction in the regiospecific dimerization of acrolein , 2001 .

[20]  W. Seifert,et al.  Bridged Polycyclic Compounds. X. The Synthesis of endo and exo-1,2-Dihydrodicyclopentadienes and Related Compounds1 , 1960 .

[21]  R. Hoffmann Orbital Symmetries and endo-exo Relationships in Concerted Cycloaddition Reaction (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .

[22]  K. Alder,et al.  Untersuchungen über den Verlauf der Diensynthese , 1937 .

[23]  P. Schleyer,et al.  An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties , 1997 .

[24]  G. Mehta,et al.  Stereoelectronic control in Diels-Alder reaction of dissymmetric 1, 3-dienes. , 2000, Accounts of chemical research.

[25]  R. Sustmann,et al.  Correlation of endo/exo selectivity in (4+2) cycloadditions of cyclic dienes with solvent effects. A self-consistent reaction field study , 1992 .

[26]  L. Toma,et al.  A bispericyclic transition structure allows for efficient relief of antiaromaticity enhancing reactivity and endo stereoselectivity in the dimerization of the fleeting cyclopentadienone. , 2003, The Journal of organic chemistry.

[27]  L. Domingo,et al.  Ab Initio Study of Stereo- and Regioselectivity in the Diels−Alder Reaction between 2-Phenylcyclopentadiene and α-(Methylthio)acrylonitrile , 1997 .

[28]  K. Houk,et al.  Hetero-Diels-Alder reaction transition structures: reactivity, stereoselectivity, catalysis, solvent effects, and the exo-lone-pair effect , 1993 .

[29]  P. Schleyer,et al.  ARE THE MOST STABLE FUSED HETEROBICYCLES THE MOST AROMATIC , 1996 .

[30]  R. Sustmann,et al.  Solvent effects on endo/exo selective in (4 + 2) cycloadditions of cyanoethylenes. , 1992 .

[31]  P. Schleyer,et al.  Aromaticity of pericyclic reaction transition structures: magnetic evidence , 1998 .

[32]  T. Keith,et al.  A comparison of models for calculating nuclear magnetic resonance shielding tensors , 1996 .

[33]  R. W. Strozier,et al.  Lewis acid catalysis of Diels-Alder reactions , 1973 .

[34]  P. Schleyer,et al.  The Cope Rearrangement Transition Structure Is Not Diradicaloid, but Is It Aromatic? , 1995 .

[35]  P. Venuvanalingam,et al.  Theoretical investigation on the reactivity of sulfur‐centered heterocumulenes as dienophiles in Diels–Alder reactions and endo‐lone‐pair effect , 1998 .

[36]  R. Woodward,et al.  Studies on Diene-addition Reactions. II.1 The Reaction of 6,6-Pentamethylenefulvene with Maleic Anhydride , 1944 .

[37]  W. Bartley,et al.  Cyclopropene. V. Some Reactions of Cyclopropene1 , 1960 .

[38]  P. Schleyer,et al.  Dissected Nucleus-Independent Chemical Shift Analysis of π-Aromaticity and Antiaromaticity. , 2001, Organic letters.

[39]  A. Wassermann 360. The mechanism of additions to double bonds. Part II. The steric course of two diene syntheses , 1935 .

[40]  P. Schleyer,et al.  Magnetic Properties of Aromatic Transition States: The Diels–Alder Reactions , 1994 .

[41]  Paul von Ragué Schleyer,et al.  Electrostatic Acceleration of Electrolytic Reactions by Metal Cation Complexation: The Cyclization of 1,3-cis-5-Hexatriene into 1,3-Cyclohexadiene and the 1,5-Hydrogen Shift in Cyclopentadiene. The Aromaticity of the Transition Structures , 1995 .

[42]  T. Fueno,et al.  Endo selectivities of some methyl-substituted dienophiles in Diels-Alder reactions with cyclopentadiene , 1970 .

[43]  K. Houk,et al.  Exo-lone-pair effect on hetero-Diels-Alder cycloaddition stereochemistry , 1992 .

[44]  K. Houk The role of secondary orbital interactions in cycloaddition reactions , 1970 .

[45]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[46]  J. J. Dannenberg,et al.  A Theoretical Study of the Endo/Exo Selectivity of the Diels−Alder Reaction between Cyclopropene and Butadiene , 1997 .

[47]  M. G. Evans,et al.  The activation energy of diene association reactions , 1938 .

[48]  G. W. Wheland,et al.  Advanced organic chemistry , 1949 .

[49]  G. Subramanian,et al.  Aromaticity of Annelated Borepins , 1997 .

[50]  P. Schleyer,et al.  A detailed theoretical analysis of the 1,7-sigmatropic hydrogen shift : the Möbius character of the eight-electron transition structure , 1993 .

[51]  Transition Structures of Hydrocarbon Pericyclic Reactions , 1992 .

[52]  D. Suárez,et al.  Ab initio study of the Lewis acid-catalyzed Diels-Alder reaction of sulfur dioxide with isoprene: regioselectivity and stereoselectivity , 1994 .

[53]  J. Baldwin,et al.  Stereochemistry of the Diels-Alder reaction of butadiene with cyclopropene , 1989 .

[54]  Todd A. Keith,et al.  Calculation of magnetic response properties using a continuous set of gauge transformations , 1993 .

[55]  D. Suárez,et al.  ON THE ORIGIN OF THE ENDO/EXO SELECTIVITY IN DIELS-ALDER REACTIONS , 1998 .

[56]  Jerry March,et al.  Advanced Organic Chemistry: Reactions, Mechanisms, and Structure , 1977 .

[57]  J. Mayoral,et al.  Do secondary orbital interactions really exist? , 2000, Accounts of chemical research.

[58]  M. G. Evans The activation energies of reactions involving conjugated systems , 1939 .

[59]  Paul von Ragué Schleyer,et al.  Introductory lecture. Electrostatic acceleration of the 1,5-H shifts in cyclopentadiene and in penta-1,3-diene by Li+ complexation: aromaticity of the transition structures , 1994 .

[60]  R. Ottenbrite,et al.  Secondary orbital interactions determining regioselectivity in the Diels-Alder reaction. 4. Experimental and theoretical examination of the reaction of acrylonitrile with 1-(phenylthio)-2-methoxy-1,3-butadiene. Determination of the conformations of the four cyclohexene adducts by proton NMR , 1973 .

[61]  R. K. Hill,et al.  Stereochemistry of the Diels-Alder Reaction. , 1961 .

[62]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[63]  K. Alder,et al.  Über den sterischen Verlauf von Additions- und Substitutions-reaktionen. I. Zur Stereochemie der Dien-synthese. Gemeinsam mit Dr. Frhr. v. Buddenbrock, Dr. W. Eckardt, Dr. W. Frercks und Dr. St. Schneider , 1934 .

[64]  J. Mayoral,et al.  Solvent effects on the mechanism and selectivities of asymmetric Diels-Alder reactions , 1993 .

[65]  J. Gajewski A semitheoretical multiparameter approach to correlate solvent effects on reactions and equilibria , 1992 .

[66]  J. White,et al.  Structural Investigations into the retro-Diels-Alder Reaction. Experimental and Theoretical Studies. , 2002, Journal of the American Chemical Society.

[67]  Dennis R. Salahub,et al.  NUCLEAR MAGNETIC RESONANCE SHIELDING TENSORS CALCULATED WITH A SUM-OVER-STATES DENSITY FUNCTIONAL PERTURBATION THEORY , 1994 .

[68]  D. Ginsburg Tetrahedron report number 149 , 1983 .

[69]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[70]  A. Arrieta,et al.  Direct evaluation of secondary orbital interactions in the Diels-Alder reaction between cyclopentadiene and maleic anhydride. , 2001, The Journal of organic chemistry.

[71]  P. Schleyer,et al.  Evidence for the Möbius aromatic character of eight π electron conrotatory transition structure. Magnetic criteria , 1994 .

[72]  Dennis R. Salahub,et al.  Gaussian-based density functional methodology, software, and applications , 1991 .

[73]  D. Suárez,et al.  Ab initio study of the effect of CH ··· O hydrogen bonding on the exo/endo stereoselectivity of Diels‐Alder reactions of 2‐substituted‐1,3‐dienes with sulfur dioxide , 1996 .

[74]  Leif A. Eriksson,et al.  The calculation of NMR and ESR spectroscopy parameters using density functional theory , 1995 .

[75]  T. Fueno,et al.  Role of attractive interactions in endo-exo stereoselectivities of Diels-Alder reactions , 1972 .

[76]  Y. Apeloig,et al.  Evidence for the Dominant Role of Secondary Orbital Interactions in Determining the Stereochemistry of the Diels-Alder Reaction: The Case of Cyclopropene , 1995 .

[77]  Andrew G. Leach,et al.  A Standard Set of Pericyclic Reactions of Hydrocarbons for the Benchmarking of Computational Methods: The Performance of ab Initio, Density Functional, CASSCF, CASPT2, and CBS-QB3 Methods for the Prediction of Activation Barriers, Reaction Energetics, and Transition State Geometries , 2003 .

[78]  L. J. Schaad,et al.  On the stability of large [4n]annulenes. , 2003, Organic letters.

[79]  K. Houk,et al.  Transition structures of the Lewis acid-catalyzed Diels-Alder reaction of butadiene with acrolein. The origins of selectivity , 1990 .

[80]  Dennis R. Salahub,et al.  Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation , 1992 .

[81]  Thomas H. Lowry,et al.  Mechanism and Theory in Organic Chemistry , 1976 .

[82]  Jan B. F. N. Engberts,et al.  Diels-Alder reactions in aqueous solutions. Enforced hydrophobic interactions between diene and dienophile , 1991 .

[83]  H. Fujimoto,et al.  Theoretical Study of Endo Selectivity in the Diels-Alder Reactions between Butadienes and Cyclopropene. , 1999, The Journal of organic chemistry.