Matched Filters for Noisy Induced Subgraph Detection

The problem of finding the vertex correspondence between two noisy graphs with different number of vertices where the smaller graph is still large has many applications in social networks, neuroscience, and computer vision. We propose a solution to this problem via a graph matching matched filter: centering and padding the smaller adjacency matrix and applying graph matching methods to align it to the larger network. The centering and padding schemes can be incorporated into any algorithm that matches using adjacency matrices. Under a statistical model for correlated pairs of graphs, which yields a noisy copy of the small graph within the larger graph, the resulting optimization problem can be guaranteed to recover the true vertex correspondence between the networks. However, there are currently no efficient algorithms for solving this problem. To illustrate the possibilities and challenges of such problems, we use an algorithm that can exploit a partially known correspondence and show via varied simulations and applications to Drosophila and human connectomes that this approach can achieve good performance.

[1]  R. Burkard Quadratic Assignment Problems , 1984 .

[2]  Carey E. Priebe,et al.  Seeded graph matching for correlated Erdös-Rényi graphs , 2014, J. Mach. Learn. Res..

[3]  Terry Caelli,et al.  An eigenspace projection clustering method for inexact graph matching , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Nagiza F. Samatova,et al.  A scalable, parallel algorithm for maximal clique enumeration , 2009, J. Parallel Distributed Comput..

[5]  Carey E. Priebe,et al.  Statistical Inference on Random Dot Product Graphs: a Survey , 2017, J. Mach. Learn. Res..

[6]  Yongtang Shi,et al.  Fifty years of graph matching, network alignment and network comparison , 2016, Inf. Sci..

[7]  Danai Koutra,et al.  Graph based anomaly detection and description: a survey , 2014, Data Mining and Knowledge Discovery.

[8]  Edward R. Scheinerman,et al.  Random Dot Product Graph Models for Social Networks , 2007, WAW.

[9]  Yosi Keller,et al.  A Probabilistic Approach to Spectral Graph Matching , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Guillermo Sapiro,et al.  Graph Matching: Relax at Your Own Risk , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Daniele Durante,et al.  Nonparametric Bayes Modeling of Populations of Networks , 2014, 1406.7851.

[12]  J. Jeffry Howbert,et al.  The Maximum Clique Problem , 2007 .

[13]  Benny Sudakov,et al.  On the asymmetry of random regular graphs and random graphs , 2002, Random Struct. Algorithms.

[14]  C. Nickel RANDOM DOT PRODUCT GRAPHS A MODEL FOR SOCIAL NETWORKS , 2008 .

[15]  Peter D. Hoff,et al.  Multiplicative latent factor models for description and prediction of social networks , 2009, Comput. Math. Organ. Theory.

[16]  Li Chen,et al.  Spectral clustering for divide-and-conquer graph matching , 2013, Parallel Comput..

[17]  Mam Riess Jones Color Coding , 1962, Human factors.

[18]  Daniel L. Sussman,et al.  Graph matching the matchable nodes when some nodes are unmatchable , 2017, ArXiv.

[19]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[20]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[21]  Dennis Shasha,et al.  A subgraph isomorphism algorithm and its application to biochemical data , 2013, BMC Bioinformatics.

[22]  William Song,et al.  Static graph challenge: Subgraph isomorphism , 2017, 2017 IEEE High Performance Extreme Computing Conference (HPEC).

[23]  Alessia Saggese,et al.  Challenging the Time Complexity of Exact Subgraph Isomorphism for Huge and Dense Graphs with VF3 , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Carey E. Priebe,et al.  Seeded graph matching , 2012, Pattern Recognit..

[25]  Mario Vento,et al.  A (sub)graph isomorphism algorithm for matching large graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Umapada Pal,et al.  Product Graph-based Higher Order Contextual Similarities for Inexact Subgraph Matching , 2017, Pattern Recognit..

[27]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[28]  Feng Li,et al.  The complete connectome of a learning and memory centre in an insect brain , 2017, Nature.

[29]  Christine Solnon,et al.  AllDifferent-based filtering for subgraph isomorphism , 2010, Artif. Intell..

[30]  Daniel L. Sussman,et al.  Matchability of heterogeneous networks pairs. , 2017, Information and inference : a journal of the IMA.

[31]  Ewout van den Berg,et al.  1-Bit Matrix Completion , 2012, ArXiv.

[32]  Carey E. Priebe,et al.  Fast Approximate Quadratic Programming for Graph Matching , 2015, PloS one.

[33]  V. Lyzinski,et al.  Tractable Graph Matching via Soft Seeding , 2018, 1807.09299.

[34]  Mark E. J. Newman,et al.  Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Guillermo Sapiro,et al.  Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching , 2013, NIPS.

[36]  L. Gordon,et al.  Tutorial on large deviations for the binomial distribution. , 1989, Bulletin of mathematical biology.

[37]  Matthias Grossglauser,et al.  On the performance of percolation graph matching , 2013, COSN '13.

[38]  Madhav V. Marathe,et al.  Subgraph Enumeration in Large Social Contact Networks Using Parallel Color Coding and Streaming , 2010, 2010 39th International Conference on Parallel Processing.

[39]  Andrew K. C. Wong,et al.  Graph Optimal Monomorphism Algorithms , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[40]  Baruch Schieber,et al.  Subgraph Counting: Color Coding Beyond Trees , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[41]  S. Chatterjee,et al.  Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.

[42]  George Karypis,et al.  Frequent subgraph discovery , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[43]  Vincenzo Carletti,et al.  Exact and Inexact Methods for Graph Similarity in Structural Pattern RecognitionPhD thesis of Vincenzo Carletti. (Méthodes exactes et inexactes pour mesurer la similarité de graphes en reconnaissance structurelle de formes. ) , 2016 .

[44]  Carey E. Priebe,et al.  Alignment strength and correlation for graphs , 2018, Pattern Recognit. Lett..

[45]  Alexander M. Bronstein,et al.  Graph matching: relax or not? , 2014, ArXiv.

[46]  M. Zaslavskiy,et al.  A Path Following Algorithm for the Graph Matching Problem , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Vince D. Calhoun,et al.  A High-Throughput Pipeline Identifies Robust Connectomes But Troublesome Variability , 2017, bioRxiv.

[48]  Horst Bunke,et al.  On a relation between graph edit distance and maximum common subgraph , 1997, Pattern Recognit. Lett..

[49]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[50]  Y. Aflalo,et al.  On convex relaxation of graph isomorphism , 2015, Proceedings of the National Academy of Sciences.

[51]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[52]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[53]  Mario Vento,et al.  Graph Matching and Learning in Pattern Recognition in the Last 10 Years , 2014, Int. J. Pattern Recognit. Artif. Intell..

[54]  Kamesh Madduri,et al.  Fast Approximate Subgraph Counting and Enumeration , 2013, 2013 42nd International Conference on Parallel Processing.