Look-Ahead SCOPF (LASCOPF) for Tracking Demand Variation via Auxiliary Proximal Message Passing (APMP) Algorithm

In this paper, we will consider the Look-Ahead Security Constrained Optimal Power Flow (LASCOPF) problem looking forward multiple dispatch intervals, in which the load demand varies over dispatch intervals according to some forecast. We will consider the base-case and several contingency scenarios in the upcoming as well as in the subsequent dispatch intervals. We will formulate and solve the problem in a Model Predictive Control (MPC) paradigm. We will present the Auxiliary Proximal Message Passing (APMP) algorithm to solve this problem, which is a bi-layered decomposition-coordination type distributed algorithm, consisting of an outer Auxiliary Problem Principle (APP) layer and an inner Proximal Message Passing (PMP) layer. The APP part of the algorithm distributes the computation across several dispatch intervals and the PMP part performs the distributed computation within each of the dispatch interval across different devices (i.e. generators, transmission lines, loads) and nodes or nets. We will demonstrate the effectiveness of our method with a series of numerical simulations.

[1]  K. Talluri,et al.  The Theory and Practice of Revenue Management , 2004 .

[2]  Stephen Boyd,et al.  Security Constrained Optimal Power Flow via proximal message passing , 2014, 2014 Clemson University Power Systems Conference.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Steven H. Low,et al.  Convex Relaxation of Optimal Power Flow—Part I: Formulations and Equivalence , 2014, IEEE Transactions on Control of Network Systems.

[5]  Henrik Sandberg,et al.  A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems , 2017, IEEE Transactions on Smart Grid.

[6]  R. Baldick,et al.  State estimation distributed processing [for power systems] , 2000 .

[7]  J. Ramos,et al.  State-of-the-art, challenges, and future trends in security constrained optimal power flow , 2011 .

[8]  Florian Herzog Strategic portfolio management for long-term investments , 2005 .

[9]  Stephen P. Boyd,et al.  CVXGEN: a code generator for embedded convex optimization , 2011, Optimization and Engineering.

[10]  H.H. Happ,et al.  Optimal power dispatchߞA comprehensive survey , 1977, IEEE Transactions on Power Apparatus and Systems.

[11]  Stephen P. Boyd,et al.  Dynamic Network Energy Management via Proximal Message Passing , 2013, Found. Trends Optim..

[12]  Balho H. Kim,et al.  A fast distributed implementation of optimal power flow , 1999 .

[13]  Jayant Kalagnanam,et al.  Distributed methods for solving the security-constrained optimal power flow problem , 2012, 2012 IEEE PES Innovative Smart Grid Technologies (ISGT).

[14]  J. Lavaei,et al.  Physics of power networks makes hard optimization problems easy to solve , 2012, 2012 IEEE Power and Energy Society General Meeting.

[15]  K. Fujisawa,et al.  Semidefinite programming for optimal power flow problems , 2008 .

[16]  Yibing Liu,et al.  A Fully Distributed Reactive Power Optimization and Control Method for Active Distribution Networks , 2014, IEEE Transactions on Smart Grid.

[17]  Masao Fukushima,et al.  Some Reformulations and Applications of the Alternating Direction Method of Multipliers , 1994 .

[18]  Georgios B. Giannakis,et al.  Distributed Optimal Power Flow for Smart Microgrids , 2012, IEEE Transactions on Smart Grid.

[19]  Zhu Han,et al.  A distribute parallel approach for big data scale optimal power flow with security constraints , 2013, 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm).

[21]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[22]  Stephen P. Boyd,et al.  Operation and Configuration of a Storage Portfolio via Convex Optimization , 2011 .

[23]  A. Renaud,et al.  Daily generation scheduling optimization with transmission constraints: a new class of algorithms , 1992 .

[24]  Thom J. Hodgson,et al.  Supply chain planning: rolling horizon scheduling of multi-factory supply chains , 2003, WSC '03.

[25]  L. Wehenkel,et al.  State-ofthe-art , challenges , and future trends in security constrained optimal power flow , 2011 .

[26]  G. Cohen Auxiliary problem principle and decomposition of optimization problems , 1980 .

[27]  G. Cohen Optimization by decomposition and coordination: A unified approach , 1978 .

[28]  Ross Baldick,et al.  Coarse-grained distributed optimal power flow , 1997 .

[29]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[30]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[31]  Jonathan Eckstein Parallel alternating direction multiplier decomposition of convex programs , 1994 .

[32]  Stephen P. Boyd,et al.  Automatic code generation for real-time convex optimization , 2010, Convex Optimization in Signal Processing and Communications.

[33]  H. L. Happ,et al.  OPTIMAL POWER DISPATCH -A COMPREHENSIVE SURVEY , 1977 .

[34]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[35]  S. Low,et al.  Zero Duality Gap in Optimal Power Flow Problem , 2012, IEEE Transactions on Power Systems.

[36]  A. Grothey,et al.  Solving security constrained optimal power flow problems by a structure exploiting interior point method , 2015 .

[37]  Michele Trovato,et al.  On-line dynamic preventive control: an algorithm for transient security dispatch , 1998 .

[38]  M. Dempster Strategic Portfolio Management for Long-Term Investments: An Optimal Control Approach , 2005 .

[39]  Mohammad Reza Hesamzadeh,et al.  Financial Transmission Rights: A New Proposal , 2018, 2018 15th International Conference on the European Energy Market (EEM).

[40]  B. H. Kim,et al.  A comparison of distributed optimal power flow algorithms , 2000 .

[41]  Gregor Verbic,et al.  A Component-Based Dual Decomposition Method for the OPF Problem , 2017, ArXiv.

[42]  Steven H. Low,et al.  Branch Flow Model: Relaxations and Convexification—Part II , 2012 .

[43]  Javad Lavaei,et al.  Geometry of Power Flows and Optimization in Distribution Networks , 2012, IEEE Transactions on Power Systems.

[44]  Sambuddha Chakrabarti Post-contingency states representation and redispatch for restoration in power systems operation , 2017 .

[45]  Tomaso Erseghe,et al.  Distributed Optimal Power Flow Using ADMM , 2014, IEEE Transactions on Power Systems.

[46]  Gabriela Hug,et al.  Toward Distributed/Decentralized DC Optimal Power Flow Implementation in Future Electric Power Systems , 2018, IEEE Transactions on Smart Grid.

[47]  O. Alsac,et al.  Security analysis and optimization , 1987, Proceedings of the IEEE.

[48]  Stephen P. Boyd,et al.  Real-Time Convex Optimization in Signal Processing , 2010, IEEE Signal Processing Magazine.

[49]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[50]  Markus Voelter,et al.  State of the Art , 1997, Pediatric Research.

[51]  Yang Wang,et al.  Code generation for receding horizon control , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[52]  A. Monticelli,et al.  Security-Constrained Optimal Power Flow with Post-Contingency Corrective Rescheduling , 1987, IEEE Transactions on Power Systems.

[53]  Scott Backhaus,et al.  A robust approach to chance constrained optimal power flow with renewable generation , 2017 .

[54]  Nima Amjady,et al.  Security constrained optimal power flow considering detailed generator model by a new robust differe , 2011 .