On computing the spectral radius of the Hankel plus Toeplitz operator

The square root of the spectral radius of the Hankel plus Toeplitz operator has been shown to be the achievable performance of the mixed-sensitivity H/sup infinity / design. The computation of the spectral radius is the bottleneck in the synthesis of the H/sup infinity / controller. In this paper, the spectral properties of the Hankel plus Toeplitz operator are investigated. A finite procedure for computing the spectral radius of the Hankel plus Toeplitz operator is proposed. >

[1]  H. Kwakernaak Minimax frequency domain performance and robustness optimization of linear feedback systems , 1985 .

[2]  Maamar Bettayeb,et al.  Optimal approximation of continuous-time systems , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[3]  A. Laub,et al.  Feedback properties of multivariable systems: The role and use of the return difference matrix , 1981 .

[4]  L. Silverman,et al.  Spectral theory of the linear-quadratic optimal control problem: Discrete-time single-input case , 1978 .

[5]  Jyh-Ching Juang,et al.  Fast computation of achievable feedback performance in mixed sensitivity H^{∞} design , 1987 .

[6]  Bruce A. Francis,et al.  Uniformly optimal control of linear feedback systems , 1985, Autom..

[7]  B. Chang,et al.  Fast iterative algorithm forH∞ optimization problems , 1987, 1987 American Control Conference.

[8]  A finite polynomial algorithm for computing the largest eigenvalue of the "Toeplitz+Hankel" operator of the H∞ problem , 1986, 1986 25th IEEE Conference on Decision and Control.

[9]  Michael G. Safonov,et al.  Correction to "Feedback properties of multivariable systems: The role and use of the return difference matrix" , 1982 .

[10]  L. Silverman,et al.  Spectral theory of the linear-quadratic optimal control problem: A new algorithm for spectral computations , 1980 .

[11]  M. Safonov,et al.  Synthesis of positive real multivariable feedback systems , 1987 .

[12]  Sanjoy K. Mitter,et al.  A note on essential spectra and norms of mixed Hankel-Toeplitz operators , 1988 .

[13]  Edmond A. Jonckheere,et al.  L∞-compensation with mixed sensitivity as a broadband matching problem , 1984 .

[14]  R. Douglas Banach algebra techniques in the theory of Toeplitz operators , 1973 .

[15]  Edmond A. Jonckheere,et al.  A spectral characterization of H ∞ -optimal feedback performance and its efficient computation , 1986 .

[16]  Data reduction in the mixed-sensitivity H∞ design problem , 1987, 26th IEEE Conference on Decision and Control.

[17]  Allen Tannenbaum,et al.  Optimal H∞ interpolation: A new approach , 1986, 1986 25th IEEE Conference on Decision and Control.

[18]  John C. Doyle,et al.  The general distance problem in H∞ optimal control theory , 1986 .