Using the matrix pencil method to estimate the parameters of a sum of complex exponentials

The approximation of a function by a sum of complex exponentials is a problem that is at least two centuries old. Fundamentally, all techniques discussed in this article proceed from using the same sequence of data samples and vary only, but importantly, in how those samples are used in achieving the parameter estimation. All of these techniques, in other words, seek the same quantitative parameters to represent the sampled data, but use different routes to get there. The techniques for estimating the parameters are either linear or nonlinear. The linear techniques are emphasized in this presentation. In particular, the matrix pencil method is described, which is more robust to noise in the sampled data. The matrix pencil approach has a lower variance of the estimates of the parameters of interest than a polynomial-type method (Prony's method belongs to this category), and is also computationally more efficient. A bandpass version of the matrix pencil can be implemented in hardware, utilizing an AT&T DSP32C chip operating in real time. A copy of the computer program implementing the matrix pencil technique is given in the appendix. >

[1]  Tapan K. Sarkar,et al.  An alternate interpretation of complex modes in closed perfectly conducting (lossless) structures , 1994 .

[2]  Tapan K. Sarkar,et al.  Dynamic analysis of a microstrip line over a perforated ground plane , 1994 .

[3]  Tapan K. Sarkar,et al.  A Real-Time Signal Processing Technique for Approximating a Function by a Sum of Complex Exponentials Utilizing the Matrix-Pencil Approach , 1994 .

[4]  Tapan K. Sarkar,et al.  Frequency dependent characterization of radiation from an open end microstrip line , 1994 .

[5]  Raed M. Shubair,et al.  Efficient computation of the periodic Green's function in layered dielectric media , 1993 .

[6]  M. Kahrizi,et al.  Accurate de-embedding procedure for characterizing discontinuities , 1992 .

[7]  Y. Hua,et al.  Parameter estimation of multiple transient signals , 1992, TENCON'92 - Technology Enabling Tomorrow.

[8]  E. K. Miller,et al.  Using model-based parameter estimation to increase the physical interpretability and numerical efficiency of computational electromagnetics , 1991 .

[9]  Tapan K. Sarkar,et al.  On SVD for estimating generalized eigenvalues of singular matrix pencil in noise , 1991, IEEE Trans. Signal Process..

[10]  Tapan K. Sarkar,et al.  On the total least squares linear prediction method for frequency estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[11]  Y. Hua,et al.  A perturbation property of the TLS-LP method , 1990, IEEE Trans. Acoust. Speech Signal Process..

[12]  Tapan K. Sarkar,et al.  Matrix pencil and system poles , 1990, Signal Process..

[13]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[14]  Y. Hua,et al.  Generalized pencil-of-function method for extracting poles of an EM system from its transient response , 1989 .

[15]  D. Dudley,et al.  Progress in identification of electromagnetic systems , 1988, IEEE Antennas and Propagation Society Newsletter.

[16]  Tapan K. Sarkar,et al.  Perturbation analysis of TK method for harmonic retrieval problems , 1988, IEEE Trans. Acoust. Speech Signal Process..

[17]  D. Dudley,et al.  An output error model and algorithm for electromagnetic system identification , 1987 .

[18]  A. McCowen,et al.  An improved pencil-of-functions method and comparisons with traditional methods of pole extraction , 1987 .

[19]  Tapan K. Sarkar,et al.  A Generalized Approach to Direction Finding , 1986, MILCOM 1986 - IEEE Military Communications Conference: Communications-Computers: Teamed for the 90's.

[20]  Tapan K. Sarkar,et al.  High performance signal-modeling by pencil-of-functions method: Band-pass case , 1986, IEEE Trans. Acoust. Speech Signal Process..

[21]  T. Sarkar,et al.  Multivarable System Identification by Pencil-of-Functions Method , 1985, IEEE Transactions on Instrumentation and Measurement.

[22]  Tapan K. Sarkar,et al.  A Discussion of various approaches to the linear-system identification problem , 1984 .

[23]  F. R. Gantmakher The Theory of Matrices , 1984 .

[24]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[25]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[26]  T. Sarkar,et al.  Rational modeling by pencil-of-functions method , 1981, ICASSP.

[27]  Tapan K. Sarkar,et al.  Suboptimal approximation/identification of transient waveforms from electromagnetic systems by pencil-of-function method , 1980 .

[28]  Raj Mittra,et al.  Problems and Solutions Associated with Prony's Method for Processing Transient Data , 1978, IEEE Transactions on Electromagnetic Compatibility.

[29]  K. Steiglitz On the simultaneous estimation of poles and zeros in speech analysis , 1977 .

[30]  Raj Mittra,et al.  A technique for extracting the poles and residues of a system directly from its transient response , 1975 .

[31]  D. Moffatt,et al.  Detection and discrimination of radar targets , 1975 .

[32]  V. Jain Filter analysis by use of pencil of functions: Part II , 1974 .

[33]  V. Jain,et al.  Filter analysis by Grammian method , 1973 .

[34]  R. W. Latham,et al.  Representation of transient scattered fields in terms of free oscillations of bodies , 1972 .

[35]  Carl E. Baum,et al.  On the Singularity Expansion Method for the Solution of Electromagnetic Interaction Problems , 1971 .

[36]  V. K. Jain,et al.  Identification of linear systems through a Grammian technique , 1970 .

[37]  Yingbo Hua,et al.  High resolution imaging of continuously moving object using stepped frequency radar , 1994, Signal Process..

[38]  Yingbo Hua,et al.  Imaging of point scatterers from step-frequency ISAR data , 1993 .

[39]  Tapan K. Sarkar,et al.  Analysis of a wide radiating slot in the ground plane of a microstrip line , 1993 .

[40]  Tapan K. Sarkar,et al.  Utilization of Bandpass Filtering for the Matrix Pencil Method , 1993, IEEE Trans. Signal Process..

[41]  Pallab Midya,et al.  Analysis of arbitrarily shaped microstrip patch antennas using the Sommerfeld formulation , 1992 .

[42]  F. Hu The band-pass matrix pencil method for parameter estimation of exponentially damped/undamped sinusoidal signals in noise , 1990 .

[43]  Braham Himed,et al.  Application of the matrix pencil approach to direction finding , 1990 .

[44]  Tapan K. Sarkar,et al.  A discussion of various approaches to the identification/approximation problem , 1982 .

[45]  F. Tesche,et al.  On the analysis of scattering and antenna problems using the singularity expansion technique , 1973 .

[46]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[47]  IEEE Antennas and Propagation Magazine , 2022 .