Reevaluación del peligro sísmico probabilístico en Chile central

Chile es uno de los paises mas sismicos del mundo, siendo testigo de terremotos que han ocasionado perdidas tanto humanas como materiales. En ambitos de la ingenieria, el peligro sismico es una de las herramientas mas utilizadas en la prevencion de dichas perdidas. El presente estudio revisa el estado del arte de la metodologia probabilistica, comparando tres aproximaciones para su calculo y adaptandolas a Chile central. Se incorporan un conjunto de nuevos antecedentes, tales como la definicion de las fuentes sismogenicas mas importantes (interplaca, intraplaca de profundidad intermedia y corticales), reestimacion de las leyes de Gutenberg-Richter y el uso de leyes de atenuacion especificas a cada una de ellas. Con estos nuevos datos se generan mapas que muestran la aceleracion horizontal maxima (PGA) esperada para una cierta probabilidad en un determinado periodo de vida util donde no solo influye la fuente interplaca, sino que tambien se observa el efecto de las fuentes intraplaca de profundidad intermedia y cortical. En la zona urbana de Santiago, se obtienen valores PGA de 55% de la aceleracion de gravedad (g) para un periodo de retorno de 475 anos y de 72% g para un periodo de retomo de 1950 anos, siendo solo un 13% inferiores a los encontrados en la zona costera (63% g y 83% g, respectivamente).

[1]  R. Madariaga,et al.  Identification of High Frequency Pulses from Earthquake Asperities Along Chilean Subduction Zone Using Strong Motion , 2011 .

[2]  Polona Zupančič,et al.  Probabilistic Seismic Hazard Assessment Methodology for Distributed Seismicity , 2003 .

[3]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[4]  C. Lomnitz Major earthquakes and tsunamis in Chile during the period 1535 to 1955 , 1970 .

[5]  S. T. Algermissen,et al.  A probabilistic estimate of maximum acceleration in rock in the contiguous United States , 1976 .

[6]  L. Ruff,et al.  Reply [to “Comment on “Seismic coupling along the Chilean Subduction Zone” by B. W. Tichelaar and L. R. Ruff”] , 1993 .

[7]  W. Silva,et al.  Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes , 1997 .

[8]  D. JoseCorvalan,et al.  EDADES RADIOMETRICAS DE ROCAS INTRUSIVAS Y METAMORFICAS DE LA HOJA VALPARAISO-SAN ANTONIO. , 1972 .

[9]  H. Kanamori,et al.  Source spectra of great earthquakes: Teleseismic constraints on rupture process and strong motion , 1986 .

[10]  Gail M. Atkinson,et al.  Empirical Ground-Motion Relations for Subduction-Zone Earthquakes and Their Application to Cascadia and Other Regions , 2003 .

[11]  H. Kanamori,et al.  Back-arc opening and the mode of subduction , 1979 .

[12]  Cinna Lomnitz,et al.  Major Earthquakes of Chile: A Historical Survey, 1535-1960 , 2004 .

[13]  T. Monfret,et al.  Crustal seismicity in central Chile , 2004 .

[14]  Olafur Gudmundsson,et al.  A regionalized upper mantle (RUM) seismic model , 1998 .

[15]  Sergio Ruiz,et al.  Preliminary re-evaluation of probabilistic seismic hazard assessment in Chile: from Arica to Taitao Peninsula , 2009 .

[16]  S. Sepúlveda,et al.  New Findings on the 1958 Las Melosas Earthquake Sequence, Central Chile: Implications for Seismic Hazard Related to Shallow Crustal Earthquakes in Subduction Zones , 2008 .

[17]  R. Charrier,et al.  Tectonostratigraphic evolution of the Andean Orogen in Chile , 2007 .

[18]  R. Youngs,et al.  Attenuation Relationships for Shallow Crustal Earthquakes Based on California Strong Motion Data , 1997 .

[19]  S. Tapia Caracterización de Ondas Sísmicas de Campo Cercano en Alta Frecuencia , 2008 .

[20]  R. Lacassin,et al.  The West Andean Thrust, the San Ramón Fault, and the seismic hazard for Santiago, Chile , 2010 .

[21]  F. Leyton,et al.  Intraplate and interplate earthquakes in chilean subduction zone: a theoretical and observational comparison , 2009 .

[22]  S. Barrientos Slip distribution of the 1985 Central Chile earthquake , 1988 .

[23]  J. J. Flynn,et al.  The Abanico extensional basin: Regional extension, chronology of tectonic inversion and relation to shallow seismic activity and Andean uplift , 2005 .

[24]  H. Kanamori,et al.  Large intermediate-depth earthquakes and the subduction process , 1988 .

[25]  C. Stern,et al.  PETROCHEMISTRY AND AGE OF RHYOLITIC PYROCLASTIC FLOWS WHICH OCCUR ALONG THE DRAINAGE VALLEYS OF THE RIO MAIPO AND RIO CACHAPOAL (CHILE) AND THE RIO YAUCHA ANO RIO PAPAGAYOS (ARGENTINA) , 2010 .

[26]  S. T. Algermissen,et al.  Probabilistic estimates of maximum acceleration and velocity in rock in the contiguous United States , 1982 .

[27]  Giorgi Khazaradze,et al.  Short‐ and long‐term effects of GPS measured crustal deformation rates along the south central Andes , 2003 .

[28]  COMPARATIVE STUDY OF SUBDUCTION EARTHQUAKE GROUND MOTION OF NORTH, CENTRAL AND SOUTH AMERICA , 2002 .

[29]  B. Gutenberg,et al.  Frequency of Earthquakes in California , 1944, Nature.

[30]  Larry J. Ruff,et al.  Depth of seismic coupling along subduction zones , 1993 .

[31]  Mark D. Petersen,et al.  Seismic hazard estimate from background seismicity in southern California , 1996, Bulletin of the Seismological Society of America.

[32]  Thomas H. Heaton,et al.  Seismic potential associated with subduction in the northwestern United States , 1984 .

[33]  S. Hartzell,et al.  Wide-band analysis of the 3 March 1985 central Chile earthquake: Overall source process and rupture history , 1994 .

[34]  Hiroo Kanamori,et al.  Seismicity and the subduction process , 1980 .

[35]  S. K. Singh,et al.  The 1985 Central Chile Earthquake: A Repeat of Previous Great Earthquakes in the Region? , 1986, Science.

[36]  Ezio Faccioli,et al.  Engineering seismic risk analysis of the Friuli region , 1979 .