Diagnostic Performance of 18F-FET PET in Newly Diagnosed Cerebral Lesions Suggestive of Glioma

The aim of this study was to assess the clinical value of O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET in the initial diagnosis of cerebral lesions suggestive of glioma. Methods: In a retrospective study, we analyzed the clinical, radiologic, and neuropathologic data of 174 patients (77 women and 97 men; mean age, 45 ± 15 y) who had been referred for neurosurgical assessment of unclear brain lesions and had undergone 18F-FET PET. Initial histology (n = 168, confirmed after surgery or biopsy) and the clinical course and follow-up MR imaging in 2 patients revealed 66 high-grade gliomas (HGG), 77 low-grade gliomas (LGG), 2 lymphomas, and 25 nonneoplastic lesions (NNL). In a further 4 patients, initial histology was unspecific, but during the course of the disease all patients developed an HGG. The diagnostic value of maximum and mean tumor-to-brain ratios (TBRmax/TBRmean) of 18F-FET uptake was assessed using receiver-operating-characteristic (ROC) curve analyses to differentiate between neoplastic lesions and NNL, between HGG and LGG, and between high-grade tumor (HGG or lymphoma) and LGG or NNL. Results: Neoplastic lesions showed significantly higher 18F-FET uptake than NNL (TBRmax, 3.0 ± 1.3 vs. 1.8 ± 0.5; P < 0.001). ROC analysis yielded an optimal cutoff of 2.5 for TBRmax to differentiate between neoplastic lesions and NNLs (sensitivity, 57%; specificity, 92%; accuracy, 62%; area under the curve [AUC], 0.76; 95% confidence interval [CI], 0.68–0.84). The positive predictive value (PPV) was 98%, and the negative predictive value (NPV) was 27%. ROC analysis for differentiation between HGG and LGG (TBRmax, 3.6 ± 1.4 vs. 2.4 ± 1.0; P < 0.001) yielded an optimal cutoff of 2.5 for TBRmax (sensitivity, 80%; specificity, 65%; accuracy, 72%; AUC, 0.77; PPV, 66%; NPV, 79%; 95% CI, 0.68–0.84). Best differentiation between high-grade tumors (HGG or lymphoma) and both NNL and LGG was achieved with a TBRmax cutoff of 2.5 (sensitivity, 79%; specificity, 72%; accuracy, 75%; AUC, 0.79; PPV, 65%; NPV, 84%; 95% CI, 0.71–0.86). The results for TBRmean were similar with a cutoff of 1.9. Conclusion: 18F-FET uptake ratios provide valuable additional information for the differentiation of cerebral lesions and the grading of gliomas. TBRmax of 18F-FET uptake beyond the threshold of 2.5 has a high PPV for detection of a neoplastic lesion and supports the necessity of an invasive procedure, for example, biopsy or surgical resection. Low 18F-FET uptake (TBRmax < 2.5) excludes a high-grade tumor with high probability.

[1]  G. Fink,et al.  Assessment of Treatment Response in Patients with Glioblastoma Using O-(2-18F-Fluoroethyl)-l-Tyrosine PET in Comparison to MRI , 2012, The Journal of Nuclear Medicine.

[2]  J. Tonn,et al.  MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? , 2012, European Journal of Nuclear Medicine and Molecular Imaging.

[3]  K. Langen,et al.  Cost-effectiveness analysis of FET PET-guided target selection for the diagnosis of gliomas , 2012, European Journal of Nuclear Medicine and Molecular Imaging.

[4]  John O. Prior,et al.  Performance of 18F-Fluoro-Ethyl-Tyrosine (18F-FET) PET for the Differential Diagnosis of Primary Brain Tumor: A Systematic Review and Metaanalysis , 2012, The Journal of Nuclear Medicine.

[5]  Wolfgang A Weber,et al.  An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. , 2011, International journal of radiation oncology, biology, physics.

[6]  R. Baum,et al.  Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for Glioma Grading: Assessment of Individual Probability of Malignancy , 2011, Clinical nuclear medicine.

[7]  Michael Sabel,et al.  Comparison of 18F-FET PET and 5-ALA fluorescence in cerebral gliomas , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[8]  C. Hartmann,et al.  Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. , 2011, Neuro-oncology.

[9]  W. Brenner,et al.  Comparison of F-18 FET-PET with F-18 FDG-PET for biopsy planning of non-contrast-enhancing gliomas , 2010, European Radiology.

[10]  S. Weis,et al.  Is there a place for FET PET in the initial evaluation of brain lesions with unknown significance? , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[11]  Lutz Tellmann,et al.  Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. , 2009, Nuclear medicine and biology.

[12]  Soonmee Cha,et al.  Neuroimaging in neuro-oncology , 2009, Neurotherapeutics.

[13]  Christian Woiciechowsky,et al.  Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast-enhancing gliomas , 2008, Journal of Neuro-Oncology.

[14]  Jochen Herms,et al.  FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[15]  G. Reifenberger,et al.  Prognostic Value of O-(2-18F-Fluoroethyl)-l-Tyrosine PET and MRI in Low-Grade Glioma , 2007, Journal of Nuclear Medicine.

[16]  G. Reifenberger,et al.  18F-FET PET differentiation of ring-enhancing brain lesions. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[17]  Karl-Josef Langen,et al.  O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. , 2006, Nuclear medicine and biology.

[18]  W. Koch,et al.  Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[19]  Karl-Josef Langen,et al.  O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. , 2005, Brain : a journal of neurology.

[20]  Hans-Jakob Steiger,et al.  Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. , 2005, Journal of neurosurgery.

[21]  K. Hamacher,et al.  O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[22]  Jörg-Christian Tonn,et al.  Value of O-(2-[18F]fluoroethyl)-l-tyrosine PET for the diagnosis of recurrent glioma , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[23]  Lutz Tellmann,et al.  Comparison of O-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodo-alpha-methyl-L-tyrosine SPECT in brain tumors. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[24]  K. Hamacher,et al.  Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. , 2002, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[25]  A. Thiel,et al.  11C-methionine PET for differential diagnosis of low-grade gliomas , 1998, Neurology.

[26]  J. Mukherjee,et al.  11C-l-Methionine Positron Emission Tomography in the Clinical Management of Cerebral Gliomas , 2007, Molecular Imaging and Biology.

[27]  M Schwaiger,et al.  Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.