Electrical conductivity of TaOx as function of composition and temperature

[1]  M. Skowronski,et al.  Modeling of the Thermodiffusion-Induced Filament Formation in TiN/Tax< , 2022, Physical Review Applied.

[2]  R. Dittmann,et al.  Chemical Structure of Conductive Filaments in Tantalum Oxide Memristive Devices and Its Implications for the Formation Mechanism , 2022, Advanced Electronic Materials.

[3]  Long-Qing Chen,et al.  High-throughput phase-field simulations and machine learning of resistive switching in resistive random-access memory , 2020, npj Computational Materials.

[4]  Huaqiang Wu,et al.  Quantitative, Dynamic TaOx Memristor/Resistive Random Access Memory Model , 2020, ACS Applied Electronic Materials.

[5]  S. Menzel,et al.  Metallic filamentary conduction in valence change-based resistive switching devices: the case of TaOx thin film with x ∼ 1. , 2019, Nanoscale.

[6]  Jonathan M. Goodwill,et al.  Stable Metallic Enrichment in Conductive Filaments in TaOx‐Based Resistive Switches Arising from Competing Diffusive Fluxes , 2019, Advanced Electronic Materials.

[7]  Marek Skowronski,et al.  Formation of the Conducting Filament in TaO x-Resistive Switching Devices by Thermal-Gradient-Induced Cation Accumulation. , 2018, ACS applied materials & interfaces.

[8]  S. Menzel,et al.  Correlation between the transport mechanisms in conductive filaments inside Ta 2 O 5 -based resistive switching devices and in substoichiometric TaO x thin films , 2018 .

[9]  V. Gritsenko,et al.  Electronic structure and charge transport in nonstoichiometric tantalum oxide , 2018, Nanotechnology.

[10]  Y. Roizin,et al.  Charge Transport and the Nature of Traps in Oxygen Deficient Tantalum Oxide. , 2018, ACS applied materials & interfaces.

[11]  S. Menzel,et al.  Investigation of the Impact of High Temperatures on the Switching Kinetics of Redox‐Based Resistive Switching Cells using a High‐Speed Nanoheater , 2017 .

[12]  S. Menzel,et al.  Physical modeling of the electroforming process in resistive-switching devices , 2017, 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD).

[13]  C. Hwang,et al.  In Situ Control of Oxygen Vacancies in TaOx Thin Films via Plasma-Enhanced Atomic Layer Deposition for Resistive Switching Memory Applications. , 2017, ACS applied materials & interfaces.

[14]  Marek Skowronski,et al.  Electro-Thermal Model of Threshold Switching in TaOx-Based Devices. , 2017, ACS applied materials & interfaces.

[15]  Malgorzata Jurczak,et al.  Transient Thermometry and High-Resolution Transmission Electron Microscopy Analysis of Filamentary Resistive Switches. , 2016, ACS applied materials & interfaces.

[16]  Linggang Zhu,et al.  Synergistic Resistive Switching Mechanism of Oxygen Vacancies and Metal Interstitials in Ta2O5 , 2016 .

[17]  S. Menzel,et al.  Nanoionic Resistive Switching Memories: On the Physical Nature of the Dynamic Reset Process , 2016 .

[18]  J. Robertson,et al.  Comparison of oxygen vacancy defects in crystalline and amorphous Ta2O5 , 2015 .

[19]  M. Marinella,et al.  Isothermal Switching and Detailed Filament Evolution in Memristive Systems , 2014, Advanced materials.

[20]  J. Bain,et al.  High-speed in-situ pulsed thermometry in oxide RRAMs , 2014, Proceedings of Technical Program - 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA).

[21]  J. Robertson,et al.  Oxygen vacancy defects in Ta2O5 showing long-range atomic re-arrangements , 2014 .

[22]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling , 2012, IEEE Transactions on Electron Devices.

[23]  J. Yang,et al.  Electronic structure and transport measurements of amorphous transition-metal oxides: observation of Fermi glass behavior , 2012 .

[24]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[25]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[26]  H. Wong,et al.  Atomic and electronic structure of amorphous and crystalline hafnium oxide: X-ray photoelectron spectroscopy and density functional calculations , 2007 .

[27]  D Lawrence,et al.  In situ site-specific specimen preparation for atom probe tomography. , 2007, Ultramicroscopy.

[28]  L. L. Leong,et al.  Detection of oxygen vacancy defect states in capacitors with ultrathin Ta2O5 films by zero-bias thermally stimulated current spectroscopy , 2003 .

[29]  N. Mott,et al.  Polarons in crystalline and non-crystalline materials , 2001 .

[30]  G. Niklasson,et al.  Dielectric study of thin films of Ta/sub 2/O/sub 5/ and ZrO/sub 2/ , 2001 .

[31]  A. M. Sergent,et al.  Defect dominated charge transport in amorphous Ta2O5 thin films , 2000 .

[32]  A. Stesmans,et al.  Trap-assisted tunneling in high permittivity gate dielectric stacks , 2000 .

[33]  R. Degraeve,et al.  Electrical properties of thin SiON/Ta2O5 gate dielectric stacks , 1999 .

[34]  J. Leray,et al.  Electrical properties of Ta2O5 films obtained by plasma enhanced chemical vapor deposition using a TaF5 source , 1996 .

[35]  E. J. Rymaszewski,et al.  Dielectric constant dependence of Poole-Frenkel potential in tantalum oxide thin films , 1994 .

[36]  J. Mackenzie,et al.  Electrical properties of semiconducting oxide glasses , 1979 .

[37]  P. Edwards,et al.  Universality aspects of the metal-nonmetal transition in condensed media , 1978 .

[38]  N. Mott Continuous and discontinuous metal-insulator transitions , 1978 .

[39]  J. H. Thomas Photoconductivity in anodic Ta2O5 formed on nitrogen‐doped tantalum films , 1974 .

[40]  D. Pulfrey,et al.  Dielectric Properties of Ta2O5 Thin Films , 1969 .

[41]  F. G. Ullman Photoconduction and trapping in sputtered tantalum oxide films , 1966 .

[42]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[43]  Nevill Mott,et al.  ON THE TRANSITION TO METALLIC CONDUCTION IN SEMICONDUCTORS , 1956 .

[44]  P. Young dc electrical conduction in thin Ta2O5 films. I. Bulk‐limited conduction , 1976 .