A formal theory of matrix primeness

Primeness of nD polynomial matrices is of fundamental importance in multidimensional systems theory. In this paper we define a quantity which describes the “amount of primeness” of a matrix and identify it as the concept of grade in commutative algebra. This enables us to produce a theory which unifies many existing results, such as the Bézout identities and complementation laws, while placing them on a firm algebraic footing. We also present applications to autonomous systems, behavioural minimality of regular systems, and transfer matrix factorization.

[1]  Ettore Fornasini,et al.  A 2-D systems approach to river pollution modelling , 1991, Multidimens. Syst. Signal Process..

[2]  J. Eagon,et al.  Ideals defined by matrices and a certain complex associated with them , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Hugues Mounier Proprietes structurelles des systemes lineaires a retards : aspects theoriques et pratiques , 1995 .

[4]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[5]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[6]  Ettore Fornasini,et al.  Observability and extendability of finite support nD behaviors , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[7]  M. Vidyasagar Control System Synthesis : A Factorization Approach , 1988 .

[8]  William P. Heath,et al.  Self-tuning prediction and control for two-dimensional processes Part 1: Fixed parameter algorithms , 1995 .

[9]  M. Morf,et al.  New results in 2-D systems theory, part II: 2-D state-space models—Realization and the notions of controllability, observability, and minimality , 1977, Proceedings of the IEEE.

[10]  Zhiping Lin On matrix fraction descriptions of multivariable linear n-D systems , 1988 .

[11]  Dante C. Youla,et al.  The Quillen - Suslin theorem and the structure of n-dimensional elementary polynomial matrices , 1984 .

[12]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[13]  J. Willems,et al.  Controllability of 2-D systems , 1991 .

[14]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[15]  Michael Eugene Stillman,et al.  Computation of Hilbert Functions , 1992, J. Symb. Comput..

[16]  Thomas Kailath,et al.  Linear Systems , 1980 .

[17]  Ettore Fornasini,et al.  nD Polynomial Matrices with Applications to Multidimensional Signal Analysis , 1997, Multidimens. Syst. Signal Process..

[18]  Christian Peskine,et al.  An algebraic introduction to complex projective geometry. 1. Commutative algebra , 1996 .

[19]  David A. Buchsbaum,et al.  Some structure theorems for finite free resolutions , 1974 .

[20]  Eric Rogers,et al.  Stability Analysis for Linear Repetitive Processes , 1992 .

[21]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[22]  S. Zampieri,et al.  State space realization of 2-D finite-dimensional behaviours , 1993 .

[23]  U. Oberst,et al.  The canonical Cauchy problem for linear systems of partial difference equations with constant coefficients over the completer-dimensional integral lattice ℕ2r , 1993 .

[24]  U. Oberst Multidimensional constant linear systems , 1990, EUROCAST.

[25]  S. Zampieri A solution of the Cauchy problem for multidimensional discrete linear shift-invariant systems , 1994 .

[26]  E. Zerz Primeness of multivariate polynomial matrices , 1996 .

[27]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[28]  Sun-Yuan Kung,et al.  New results in 2-D systems theory, part I: 2-D polynomial matrices, factorization, and coprimeness , 1977, Proceedings of the IEEE.

[29]  Dante C. Youla,et al.  Notes on n-Dimensional System Theory , 1979 .

[30]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[31]  Maria Paula Macedo Rocha Structure and representation of 2-D systems , 1990 .

[32]  D. Rees,et al.  The grade of an ideal or module , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  G. Naadimuthu,et al.  Air pollution modeling by quasilinearization , 1991 .