Flutter Vulnerability Assessment of Flexible Bridges

Diese Arbeit beschaftigt sich mit der Bewertung der Verwundbarkeit schlanker Brucken und untersucht die aeroelastische Instabilitat, das Flattern. Zwei wesentliche Beitrage werden geleistet. Zum einen wird der Performance-Based-Design-Ansatz auf den Grenzzustand der Tragfahigkeit bei Flattern angewandt. Hierbei werden die aeroelastischen Derivativa erstmalig als Zufallsvariabeln angenommen und das Flatterproblem durch Monte-Carlo-Simulationen probabilistisch betrachtet. Zur Datengewinnung wurden im CRIACIV Windkanal Experimente an einem als einfachen Hohlkastentrager ausgefuhrten Bruckendeck durchgefuhrt. Die Experimente an diesem Querschnitt sowie an zwei Rechteckprismen lieferten interessante Ergebnisse. Der zweite Hauptbeitrag der Arbeit ist eine Vornormativstudie zur Bewertung des Flatterns, welche die bestehenden Normen hinsichtlich einer Risikominimierung verbessern soll. Das Ziel ist die Entwicklung einer vereinfachten Methode zur Abschatzung der kritischen Windgeschwindigkeit des Flatterns, ohne Windkanaltests durchfuhren zu mussen. Ein solches Werkzeug kann fur Bruckenbauingenieure beim Vorentwurf mittelweit gespannter, flexibler Brucken nutzlich sein. Nach der durch zwei Fallstudien unterstutzten Analyse der Beziehung zwischen multi- und bimodalem Ansatz werden Nahrungsformeln hergeleitet, die nur drei aeroelastische Funktionen enthalten. Diese Vereinfachung wird durch eine grose Anzahl struktureller und aerodynamischer Daten validiert. Abschliesend wird eine grose Anzahl von Flatterderivativa nach Einfuhrung von Bruckenquerschnittsklassen verglichen. Da die erwahnten vereinfachten Formeln die betrachteten aeroelastischen Funktionen auf drei reduzieren, ist ein genereller Ansatz moglich. Obwohl diese Arbeit nur ein erster Schritt in Richtung dieses ehrgeizigen Zieles ist, werden alle zu bewaltigenden Schwierigkeiten angesprochen und interessante sowie viel versprechende Ergebnisse hervorgehoben.

[1]  Naruhito Shiraishi,et al.  Rain-wind induced vibrations of cables stayed bridges , 1988 .

[2]  A. Zasso,et al.  Suspension Bridge Response to Turbulent Wind: Comparison of a New Numerical Simulation Method Results with Full Scale Data , 1999 .

[3]  Claudio Borri,et al.  Is Aeolian risk as significant as other environmental risks? , 2001, Reliab. Eng. Syst. Saf..

[4]  C. Feng The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders , 1968 .

[5]  C. Scruton,et al.  Wind Effects on Structures , 1970 .

[6]  Günter Schewe,et al.  Reynolds-number effects in flow around more-or-less bluff bodies , 2001 .

[7]  Yasuharu Nakamura,et al.  The effects of turbulence on the mean flow past two-dimensional rectangular cylinders , 1984, Journal of Fluid Mechanics.

[8]  Christian Cremona,et al.  Comportement au vent des ponts , 2002 .

[9]  Masaru Matsumoto,et al.  Frequency Characteristics in Various Flutter Instabilities of Bridge Girders , 2001 .

[10]  Yasuharu Nakamura,et al.  Vortex excitation of rectangular cylinders with a long side normal to the flow , 1987 .

[11]  H. Tanaka,et al.  New Estimation Method of Aerodynamic Admittance Function , 2001 .

[12]  C. Costa,et al.  Aerodynamic admittance functions and buffeting forces for bridges via indicial functions , 2007 .

[13]  Koji Yamaguchi,et al.  Aerodynamics of wind effects on the Akashi Kaikyo Bridge , 1993 .

[14]  Robert H. Scanlan,et al.  Bridge Flutter Derivatives at Vortex Lock-In , 1998 .

[15]  Y. K. Lin,et al.  Stochastic stability of wind-excited long-span bridges , 1996 .

[16]  Frank Thiele,et al.  Assessment of Explicit Algebraic Stress Models in Transonic Flows , 1999 .

[17]  Piero D’Asdia,et al.  Aeroelastic instability of long-span suspended bridges: a multi-mode approach , 1998 .

[18]  G. Schewe On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers , 1983, Journal of Fluid Mechanics.

[19]  R. Blevins,et al.  Flow-Induced Vibration , 1977 .

[20]  Olivier Flamand,et al.  Rain-wind induced vibration of cables , 1995 .

[21]  Gianni Bartoli,et al.  Flutter mechanism for rectangular prisms in smooth and turbulent flow , 2006 .

[22]  Claudio Mannini,et al.  Computational Investigation of Flow Around Bridge Sections , 2006 .

[23]  Nicholas P. Jones,et al.  Inter-relations among flutter derivatives , 1997 .

[24]  Günter Schewe,et al.  Reynolds-Number-Effects and their Influence on Flow Induced Vibrations , 2005 .

[25]  Arindam Gan Chowdhury,et al.  Identification of eighteen flutter derivatives of an airfoil and a bridge deck , 2004 .

[26]  A G Frandsen WIND STABILITY OF SUSPENSION BRIDGES. APPLICATION OF THE THEORY OF THIN AIRFOILS , 1966 .

[27]  Arindam Gan Chowdhury,et al.  A new technique for identification of eighteen flutter derivatives using a three-degree-of-freedom section model , 2003 .

[28]  Ahsan Kareem,et al.  Nonlinear response analysis of long-span bridges under turbulent winds , 2001 .

[29]  Dieter Dinkler,et al.  Rain-wind induced vibrations - : phenomenology, mechanical modelling and numerical analysis , 2006 .

[30]  Claudio Mannini,et al.  URANS and DES simulation of flow around bridge sections , 2006 .

[31]  Allan Larsen,et al.  Reynolds Number Effects in the Flow Around a Bluff Bridge Deck Cross Section , 1998 .

[32]  Stefano Bruni,et al.  A numerical and experimental investigation on aerodynamic non linearities in bridge response to turbulent wind , 2005 .

[33]  A. Roshko Experiments on the flow past a circular cylinder at very high Reynolds number , 1961, Journal of Fluid Mechanics.

[34]  Hiromichi Shirato,et al.  Rain-wind induced vibration of cables of cable-stayed bridges , 1992 .

[35]  Shmuel Einav,et al.  A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder , 1995, Journal of Fluid Mechanics.

[36]  Xin Zhang,et al.  Effect of relative amplitude on bridge deck flutter , 2004 .

[37]  Francesco Ricciardelli,et al.  Pressure distribution and aerodynamic forces on stationary box bridge sections , 2001 .

[38]  A Damsgaard,et al.  WIND TUNNEL TESTS FOR THE GREAT BELT LINK , 1992 .

[39]  Allan Larsen,et al.  Aerodynamic aspects of the final design of the 1624 m suspension bridge across the Great Belt , 1993 .

[40]  M. Matsumoto,et al.  Torsional flutter of bluff bodies , 1997 .

[41]  Alberto Zasso,et al.  Forced motion and free motion aeroelastic tests on a new concept dynamometric section model of the Messina suspension bridge , 2004 .

[42]  A. Betâmio de Almeida,et al.  Dams and safety management at downstream valleys : proceedings of the International NATO Workshop on Dams and Safety Management at Downstream Valleys, Lisbon, Portugal, 13-15 November 1996 , 1997 .

[43]  Erich J. Plate,et al.  Flood risk and flood management , 2002 .

[44]  Reynolds,et al.  THE OSCILLATIONS OF LARGE CIRCULAR STACKS IN WIND. , 1969 .

[45]  E. C. Mikulcik,et al.  A method for the direct identification of vibration parameters from the free response , 1977 .

[46]  Jack W. Baker,et al.  Uncertainty Specification and Propagation for Loss Estimation Using FOSM Methods , 2003 .

[47]  J. Wallace,et al.  The velocity field of the turbulent very near wake of a circular cylinder , 1996 .

[48]  Paolo Spinelli,et al.  A discrete 3D model for bridge aerodynamics and aeroelasticity: nonlinearities and linearizations , 2007 .

[49]  G. Schewe Sensitivity of transition phenomena to small perturbations in flow round a circular cylinder , 1986, Journal of Fluid Mechanics.

[50]  P. Moin,et al.  Numerical studies of flow over a circular cylinder at ReD=3900 , 2000 .

[51]  G. V. Parkinson,et al.  THE SQUARE PRISM AS AN AEROELASTIC NON-LINEAR OSCILLATOR , 1964 .

[52]  Y. K. Lin,et al.  Stochastic Stability of Bridges Considering Coupled Modes: II , 1988 .

[53]  Hitoshi Yamada,et al.  Numerical simulation of wind turbulence and buffeting analysis of long-span bridges , 1999 .

[54]  A. Roshko On the development of turbulent wakes from vortex streets , 1953 .

[55]  Piotr Omenzetter,et al.  Time domain formulation of self-excited forces on bridge deck for wind tunnel experiment , 2003 .

[56]  Nicholas P. Jones,et al.  A FORM OF AERODYNAMIC ADMITTANCE FOR USE IN BRIDGE AEROELASTIC ANALYSIS , 1999 .

[57]  Giorgio Diana,et al.  The Aerodynamic Design of the Messina Straits Bridge , 1993 .

[58]  Nicholas P. Jones,et al.  A methodology for the experimental extraction of indicial functions for streamlined and bluff deck sections , 2003 .

[59]  Takeshi Yoshimura,et al.  Binary Flutter of Suspension Bridge Deck Sections , 1976 .

[60]  James M. W. Brownjohn,et al.  Strategies for aeroelastic parameter identification from bridge deck free vibration data , 2001 .

[61]  Luca Bruno,et al.  The validity of 2D numerical simulations of vortical structures around a bridge deck , 2003 .

[62]  V. Strouhal,et al.  Ueber eine besondere Art der Tonerregung , 1878 .

[63]  N. P. Jones,et al.  Identification of aeroelastic parameters of flexible bridges , 1994 .

[64]  Claudio Borri,et al.  Aeroelastic Wind Forces on Flexible Bridge Girders , 2000 .

[65]  Yuan-Cheng Fung,et al.  An introduction to the theory of aeroelasticity , 1955 .

[66]  R. Scanlan AEROELASTIC STABILITY OF LONG-SPAN BRIDGES , 1973 .

[67]  Paolo Spinelli,et al.  Effects of structural nonlinearity and along-span wind coherence on suspension bridge aerodynamics: Some numerical simulation results , 2006 .

[68]  Nicholas P. Jones,et al.  MEASURING FLUTTER DERIVATIVES FOR BRIDGE SECTIONAL MODELS IN WATER CHANNELa , 1996 .

[69]  Andreas G. Jensen,et al.  Flat plate flutter derivatives – an alternative formulation , 1998 .

[70]  A. Okajima Strouhal numbers of rectangular cylinders , 1982, Journal of Fluid Mechanics.

[71]  Yasuharu Nakamura,et al.  TORSIONAL FLUTTER OF RECTANGULAR PRISMS , 1975 .

[72]  Claudio Borri,et al.  Wind response of large roofs of stadions and arena , 2007 .

[73]  Svend Ole Hansen,et al.  Wind Loads on Structures , 1997 .

[74]  T. Gerhold,et al.  Calculation of Complex Three-Dimensional Configurations Employing the DLR-tau-Code , 1997 .

[75]  Udo Peil,et al.  Modeling of rain-wind induced vibrations , 2003 .

[76]  Hiroki Yamaguchi,et al.  Analytical study on growth mechanism of rain vibration of cables , 1988 .

[77]  Luca Caracoglia,et al.  WIND-STRUCTURE OSCILLATIONS ON LONG-SPAN SUSPENSION BRIDGES , 2001 .

[78]  M. Matsumoto,et al.  AERODYNAMIC DAMPING OF PRISMS , 1996 .

[79]  M. A. Wawzonek,et al.  Some considerations of combined effects of galloping and vortex resonance , 1981 .

[80]  R. Scanlan,et al.  Effects of Turbulence on Bridge Flutter Derivatives , 1978 .

[81]  Partha P. Sarkar,et al.  NEW IDENTIFICATION METHODS APPLIED TO THE RESPONSE OF FLEXIBLE BRIDGES TO WIND. , 1992 .

[82]  Herbert Wagner Über die Entstehung des dynamischen Auftriebes von Tragflügeln , 1925 .

[83]  N J Gimsing CABLE SUPPORTED BRIDGES: CONCEPT AND DESIGN. SECOND EDITION , 1997 .

[84]  A. Davenport Buffeting of a Suspension Bridge by Storm Winds , 1962 .

[85]  T. Theodorsen General Theory of Aerodynamic Instability and the Mechanism of Flutter , 1934 .

[86]  Y. K. Lin,et al.  Effect of spanwise correlation of turbulence field on the motion stability of long-span bridges , 1988 .

[87]  R. Scanlan,et al.  INDICIAL AERODYNAMIC FUNCTIONS FOR BRIDGE DECKS , 1974 .

[88]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[89]  Alberto Zasso,et al.  Flutter derivatives: Advantages of a new representation convention , 1996 .

[90]  E. D. Obasaju AN INVESTIGATION OF THE EFFECTS OF INCIDENCE ON THE FLOW AROUND A SQUARE SECTION CYLINDER , 1983 .

[91]  Robert H. Scanlan,et al.  Role of Indicial Functions in Buffeting Analysis of Bridges , 1984 .

[92]  Claudio Borri,et al.  Application of indicial functions in bridge deck aeroelasticity , 2006 .

[93]  Andrea Collina,et al.  Comparisons between wind tunnel tests on a full aeroelastic model of the proposed bridge over Stretto di Messina and numerical results , 1995 .

[94]  Y. Nakamura,et al.  On the aerodynamic mechanism of torsional flutter of bluff structures , 1979 .

[95]  W. Sears,et al.  Some Aspects of Non-Stationary Airfoil Theory and Its Practical Application , 1941 .

[96]  Masaru Matsumoto,et al.  Flutter stabilization and heaving-branch flutter , 1999 .

[97]  Robert H. Scanlan,et al.  AIR FOIL AND BRIDGE DECK FLUTTER DERIVATIVES , 1971 .

[98]  G. Schewe Nonlinear flow-induced resonances of an H-shaped section , 1989 .

[99]  Nicholas P. Jones,et al.  Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo bridge , 1999 .

[100]  J. Thompson,et al.  Nonlinear Dynamics and Chaos , 2002 .

[101]  Günter Schewe Influence of the Reynolds-Number on Flow Induced Vibrations of Generic Bridge Sections , 2006 .

[102]  Masaru Matsumoto,et al.  Grating effect on flutter instability , 2001 .

[103]  Guido Buresti,et al.  Vortex shedding from bluff bodies , 1998 .

[104]  Alberto Zasso,et al.  Flutter derivatives identification through full bridge aeroelastic model transfer function analysis , 1996 .

[105]  Allan Larsen,et al.  Prediction of aeroelastic stability of suspension bridges during erection , 1997 .

[106]  Nicholas P. Jones,et al.  COUPLED FLUTTER AND BUFFETING ANALYSIS OF LONG-SPAN BRIDGES , 1996 .

[107]  J. W. G. van Nunen Pressures and Forces on a Circular Cylinder in a Cross Flow at High Reynolds Numbers , 1974 .

[108]  J. Graham,et al.  Lifting Surface Theory for the Problem of an Arbitrarily Yawed Sinusoidal Gust Incident on a Thin Aerofoil in Incompressible Flow , 1970 .

[109]  Haifan Xiang,et al.  Identification of flutter derivatives of bridge decks with free vibration technique , 2010 .

[110]  Allan Larsen,et al.  Advances in aeroelastic analyses of suspension and cable-stayed bridges , 1998 .

[111]  Y. N. Chen Fluctuating Lift Forces of the Karman Vortex Streets on Single Circular Cylinders and in Tube Bundles: Part 1—The Vortex Street Geometry of the Single Circular Cylinder , 1972 .

[112]  Y. Nakamura An analysis of binary flutter of bridge deck sections , 1978 .