Influence of relative humidity and ozone on atmospheric silver corrosion

Abstract The interaction of highly pure polycrystalline silver samples with ozone (500 ppb) was investigated under certain relative humidity (RH) content (0%, 50% and 90%) in synthetic air. All experiments were performed at room temperature (22 °C) and atmospheric pressure. Highly surface sensitive methods were used to investigate chemical, morphological and structural changes and composition of the corrosion products formed at different RH and reaction times. Silver is oxidized by ozone forming Ag2O/AgO(AgIAgIIIO2) surface species. The oxide formation and corrosion rate is dependent on the RH content in the atmosphere, showing that silver is most susceptible to ozone oxidation at 50% RH.

[1]  R. Kötz,et al.  Electronic properties of Ag nanoparticle arrays. A Kelvin probe and high resolution XPS study. , 2007, Physical chemistry chemical physics : PCCP.

[2]  Geoffrey I N Waterhouse,et al.  Oxidation of a polycrystalline silver foil by reaction with ozone , 2001 .

[3]  S. K. Srinivasan,et al.  Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen , 2003 .

[4]  Bao,et al.  Interaction of oxygen with silver at high temperature and atmospheric pressure: A spectroscopic and structural analysis of a strongly bound surface species. , 1996, Physical review. B, Condensed matter.

[5]  R. Moss,et al.  The tarnishing of Ag at naturally-occurring H2S and SO2 levels , 1968 .

[6]  Christofer Leygraf Atmospheric corrosion , 2000 .

[7]  D. Liang,et al.  Influence of UV irradiation and ozone on atmospheric corrosion of bare silver , 2010 .

[8]  M. Schreiner,et al.  A New Experimental Setup for in Situ Infrared Reflection Absorption Spectroscopy Studies of Atmospheric Corrosion on Metal Surfaces considering the Influence of Ultraviolet Light , 2009, Applied spectroscopy.

[9]  Geoffrey I N Waterhouse,et al.  The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study , 2001 .

[10]  W. R. Salaneck,et al.  Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison , 2000 .

[11]  H. Hutter,et al.  Influence of increasing zinc contents in brass in the early stages of corrosion investigated by in-situ TM-AFM and SIMS , 2002, Analytical and bioanalytical chemistry.

[12]  P. Bagus,et al.  Spectroscopic Evidence for Ag(III) in Highly Oxidized Silver Films by X-ray Photoelectron Spectroscopy , 2010 .

[13]  R. Schlögl,et al.  Untersuchung der thermischen Zersetzung von Silberoxid mit Raman‐Spektroskopie: von AgO‐Einheiten zu chemisorbierten O‐Atomen auf einer Ag‐Oberfläche , 1994 .

[14]  M. Schreiner,et al.  Investigations of the interactions of CO2, O3 and UV light with silver surfaces by in situ IRRAS/QCM and ex situ TOF-SIMS , 2010 .

[15]  Thomas E. Graedel,et al.  Corrosion Mechanisms for Nickel Exposed to the Atmosphere , 1989 .

[16]  M. Barber,et al.  An investigation of the SO2Ag surface reaction using secondary ion mass spectrometry , 1974 .

[17]  J. P. Franey,et al.  The corrosion of silver by atmospheric sulfurous gases , 1985 .

[18]  L. Andrews,et al.  Resonance Raman spectrum and vibrational analysis of the ozonide ion in the argon matrix‐isolated M+O3− species , 1973 .

[19]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[20]  M. Sohn,et al.  Aquatic surface chemistry: Edited by Werner Stumm. Wiley, New York. 1987. $69.95 (ISBN 0471822951) , 1988 .

[21]  M. Schreiner,et al.  In situ TM-AFM investigations of the influence of zinc and tin as alloy constituents of copper to the early stages of corrosion , 2003 .

[22]  H. Hutter,et al.  Initial oxidation of silver surfaces by S2−and S4+ species , 2008 .

[23]  W. Stumm Chemistry of the solid-water interface , 1992 .

[24]  Geoffrey I N Waterhouse,et al.  Interaction of a polycrystalline silver powder with ozone , 2002 .

[25]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[26]  D. Tudela Silver(II) Oxide or Silver(I,III) Oxide?. , 2008 .

[27]  W. Lassiter Interaction of sulfur dioxide and carbon dioxide with clean silver in ultrahigh vacuum , 1972 .

[28]  M. Faller,et al.  Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures , 1997 .

[29]  M. Lux‐Steiner,et al.  The influence of surface topography on Kelvin probe force microscopy , 2009, Nanotechnology.

[30]  R. Schlögl,et al.  On the nature of the active state of silver during catalytic oxidation of methanol , 1993 .

[31]  S. Gertz,et al.  CHEMISTRY OF CORROSION , 2018, Metallurgy and Corrosion Control in Oil and Gas Production.

[32]  Geoffrey I N Waterhouse,et al.  Synthesis, vibrational spectra and thermal stability of Ag3O4 and related Ag7O8X salts (X=NO3-,ClO4-,HSO4-) , 2007 .

[33]  H. Kim,et al.  Corrosion process of silver in environments containing 0.1 ppm H2S and 1.2 ppm NO2 , 2003 .

[34]  J. Hyne,et al.  The production of H2S by hydrolysis of entrained cos in hydrocarbon liquids , 1979 .

[35]  A. Subrahmanyam,et al.  Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth , 2009 .

[36]  M. Al-Kuhaili Characterization of thin films produced by the thermal evaporation of silver oxide , 2007 .

[37]  Jinhai Wang,et al.  In situ surface Raman spectroscopy studies of oxygen adsorbed on electrolytic silver , 1995 .

[38]  D. Liang,et al.  Effects of Sodium Chloride Particles, Ozone, UV, and Relative Humidity on Atmospheric Corrosion of Silver , 2010 .

[39]  Henry Du,et al.  Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation. , 2011, Analytical chemistry.

[40]  Dong Shuzhong,et al.  TDS and XPS studies of the adsorption of O2 on electrolytic silver , 1985 .

[41]  M. Schreiner,et al.  Design and Application of a New Cell for in Situ Infrared Reflection–Absorption Spectroscopy Investigations of Metal–Atmosphere Interfaces , 2003, Applied spectroscopy.

[42]  C. Sunandana,et al.  REACTIVELY RADIO FREQUENCY SPUTTERED SILVER OXIDE THIN FILMS: PHASE EVOLUTION AND PHASE STABILITY , 2007 .

[43]  A. Higashitani,et al.  Ag2O3 clathrate is a novel and effective antimicrobial agent , 2012, Journal of Materials Science.

[44]  J. P. Franey,et al.  On the mechanism of silver and copper sulfidation by atmospheric H2S and OCS , 1985 .

[45]  Geoffrey I N Waterhouse,et al.  Oxygen chemisorption on an electrolytic silver catalyst: a combined TPD and Raman spectroscopic study , 2003 .

[46]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .

[47]  A. Czanderna The Adsorption of Oxygen on Silver , 1964 .

[48]  R. Schlögl,et al.  The effect of water on the formation of strongly bound oxygen on silver surfaces , 1995 .

[49]  C. Leygraf,et al.  Comparison of the early stages of corrosion of copper and iron investigated by in situ TM-AFM , 2002 .

[50]  Mahesan Chelvayohan,et al.  Work function measurements on (110), (100) and (111) surfaces of silver , 1982 .

[51]  T. Graedel Gildes model studies of aqueous chemistry. I. Formulation and potential applications of the multi-regime model , 1996 .

[52]  R. Suzuki,et al.  Use of Ozone to Prepare Silver Oxides , 2004 .

[53]  G. Millar,et al.  In situ Raman studies of the selective oxidation of methanol to formaldehyde and ethene to ethylene oxide on a polycrystalline silver catalyst , 1995 .

[54]  G. Deo,et al.  Interaction of Polycrystalline Silver with Oxygen, Water, Carbon Dioxide, Ethylene, and Methanol: In Situ Raman and Catalytic Studies , 1999 .

[55]  Philippe Colomban,et al.  Raman Spectroscopy of Nanomaterials: How Spectra Relate to Disorder, Particle Size and Mechanical Properties , 2007 .