Deformation and creep modeling in polycrystalline Ti–6Al alloys

Abstract This paper develops an experimentally validated computational model for titanium alloys accounting for plastic anisotropy and time-dependent plasticity for analyzing creep and dwell phenomena. A time-dependent crystal plasticity formulation is developed for hcp crystalline structure, with the inclusion of microstructural crystallographic orientation distribution. A multi-variable optimization method is developed to calibrate crystal plasticity parameters from experimental results of single crystals of α-Ti–6Al. Statistically equivalent orientation distributions of orientation imaging microscopy data are used in constructing the polycrystalline aggregate model. The model is used to study global and local response of the polycrystalline model for constant strain rate, creep, dwell and cyclic tests. Effects of stress localization and load shedding with orientation mismatch are also studied for potential crack initiation.

[1]  L. Anand,et al.  Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: application to titanium , 2002 .

[2]  Robert J. Asaro,et al.  Numerical simulations of stress-strain behavior in two-phase α2 + γ lamellar TiAl alloys , 1995 .

[3]  A. Thompson,et al.  Low temperature creep of Ti-6 Al-4 V , 1974, Metallurgical and Materials Transactions B.

[4]  Somnath Ghosh,et al.  Interfacial debonding analysis in multiple fiber reinforced composites , 2000 .

[5]  A. Thompson,et al.  The influence of microstructure on low temperature creep of ti-5 al-2.5 sn , 1973 .

[6]  M. Donachie Titanium: A Technical Guide , 1988 .

[7]  L. Anand,et al.  Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[8]  A. Cottrell Logarithmic and Andrade creep , 1997 .

[9]  R. Asaro,et al.  Flow localization in strain hardening crystalline solids , 1984 .

[10]  E. Nakamachi,et al.  The effect of crystallographic textures on the formability of high-strength steel sheets , 2002 .

[11]  L. Anand,et al.  Crystallographic texture evolution in bulk deformation processing of FCC metals , 1992 .

[12]  M. Grujicic,et al.  A crystal plasticity materials constitutive model for polysynthetically-twinned γ-TiAl + α2-Ti3Al single crystals , 2001 .

[13]  Lallit Anand,et al.  Elasto-viscoplastic constitutive equations for polycrystalline metals: Application to tantalum , 1998 .

[14]  C. M. Gilmore,et al.  Room temperature creep of Ti-6AI-4V , 1979 .

[15]  E. Starke,et al.  Microstructure, creep, and tensile deformation in Ti-6Al-2Nb-1Ta-0.8Mo , 1987 .

[16]  S. V. Harren,et al.  Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model , 1989 .

[17]  Christoph Leyens,et al.  Non‐Aerospace Applications of Titanium and Titanium Alloys , 2005 .

[18]  G. Daehn Modeling thermally activated deformation with a variety of obstacles, and its application to creep transients , 2001 .

[19]  M. Mills,et al.  Short-range order (SRO) and its effect on the primary creep behavior of a Ti–6wt.%Al alloy , 2001 .

[20]  David L. McDowell,et al.  Microplasticity in HCF of Ti–6Al–4V , 2001 .

[21]  Michael Ortiz,et al.  Computational modelling of single crystals , 1993 .

[22]  M. Mills,et al.  Phenomenological and microstructural analysis of room temperature creep in titanium alloys , 2000 .

[23]  E. Nakamachi,et al.  Investigations of the formability of BCC steel sheets by using crystalline plasticity finite element analysis , 2002 .

[24]  S. Balasubramanian Polycrystalline plasticity : application to deformation processing of lightweight metals , 1998 .

[25]  Alan Needleman,et al.  Material rate dependence and localized deformation in crystalline solids , 1983 .

[26]  David L. McDowell,et al.  Polycrystal plasticity simulations of fretting fatigue , 2001 .