Optimal rail-road container terminal locations on the European network

The European transport policy has focused on sustainable transport solutions, among which intermodal transport is a key player. However, its efficiency is strongly dependent on the location of the container terminals. In this paper, a set of estimated potential locations is used as input for an iterative procedure based on the p-hub median problem that takes the variation in trans-shipment costs according to the number of trans-shipped containers into account. The final results are the optimal locations for European transfer terminals embedded in a hub-and-spoke network.

[1]  Teodor Gabriel Crainic,et al.  STRATEGIC PLANNING OF FREIGHT TRANSPORTATION: STAN, AN INTERACTIVE GRAPHIC SYSTEM , 1990 .

[2]  Timothy J. Lowe,et al.  A Synthesis of Aggregation Methods for Multifacility Location Problems: Strategies for Containing Error , 1999 .

[3]  Timothy J. Lowe,et al.  Row-Column Aggregation for Rectilinear Distance p-Median Problems , 1996, Transp. Sci..

[4]  T. Aykin On “a quadratic integer program for the location of interacting hub facilities” , 1990 .

[5]  M Beuthe,et al.  TRANSPORTATION POLICY ANALYSIS WITH A GEOGRAPHIC INFORMATION SYSTEM: THE VIRTUAL NETWORK OF FREIGHT TRANSPORTATION IN EUROPE. IN: TRANSPORT AND INFORMATION SYSTEMS , 1996 .

[6]  Chi-Guhn Lee,et al.  The European Freight Railway System as a Hub-and-Spoke Network , 2007 .

[7]  Dominique Peeters,et al.  Modelling a rail/road intermodal transportation system , 2004 .

[8]  P. Harker Predicting intercity freight flows , 1987 .

[9]  John Golias,et al.  Comparative evaluation of existing and innovative rail-road freight transport terminals , 2002 .

[10]  Peter Nijkamp,et al.  INTERMODAL FREIGHT TERMINALS: AN ANALYSIS OF THE TERMINAL MARKET , 1999 .

[11]  M. E. O'Kelly,et al.  A clustering approach to the planar hub location problem , 1993, Ann. Oper. Res..

[12]  Illia Racunica,et al.  OPTIMAL LOCATION OF INTERMODAL FREIGHT HUBS , 2005 .

[13]  James F. Campbell,et al.  Integer programming formulations of discrete hub location problems , 1994 .

[14]  James F. Campbell Hub Location and the p-Hub Median Problem , 1996, Oper. Res..

[15]  Bart Jourquin,et al.  Rail-Road terminal locations: aggregation errors and best potential locations on large networks , 2007 .

[16]  Jadranka Skorin-Kapov,et al.  HUB NETWORK DESIGN WITH SINGLE AND MULTIPLE ALLOCATION: A COMPUTATIONAL STUDY , 1996 .

[17]  D. Skorin-Kapov,et al.  Tight linear programming relaxations of uncapacitated p-hub median problems , 1996 .

[18]  Yosef Sheffi,et al.  Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods , 1985 .

[19]  Lori Tavasszy,et al.  Modelling European freight transport flows. , 1996 .

[20]  Bart Jourquin A multi-flow multi-modal assignment procedure on large freight transportation networks , 2006 .

[21]  Sabine Limbourg Modèles de localisations optimales de hubs de conteneurs sur un réseau multimodal , 2007 .

[22]  J. Current,et al.  Analysis of Errors Due to Demand Data Aggregation in the Set Covering and Maximal Covering Location Problems , 2010 .

[23]  Marimuthu Palaniswami,et al.  Neural versus traditional approaches to the location of interacting hub facilities , 1996 .

[24]  Hugues Marchand,et al.  Pour une localisation optimale des centres de transbordement intermodaux entre réseaux de transport: formulation et extensions , 2001 .

[25]  Rajan Batta,et al.  Analysis of centroid aggregation for the Euclidean distance p-median problem , 1999, Eur. J. Oper. Res..

[26]  Avijit Ghosh,et al.  Spatial analysis and location-allocation models , 1987 .

[27]  Harvey J. Miller,et al.  THE HUB NETWORK DESIGN PROBLEM: A REVIEW AND SYNTHESIS. , 1994 .

[28]  J. Current,et al.  Elimination of Source A and B Errors in p‐Median Location Problems , 2010 .

[29]  Cathy Macharis,et al.  A Methodology to Evaluate Potential Locations for Intermodal Barge Terminals: A Policy Decision Support Tool , 2004 .

[30]  J. G. Klincewicz,et al.  Avoiding local optima in thep-hub location problem using tabu search and GRASP , 1993, Ann. Oper. Res..

[31]  D. Skorin-Kapov,et al.  On tabu search for the location of interacting hub facilities , 1994 .

[32]  Michael F. Goodchild,et al.  The Aggregation Problem in Location-Allocation , 2010 .

[33]  Frank Plastria,et al.  On the choice of aggregation points for continuousp-median problems: A case for the gravity centre , 2001 .

[34]  Olli-Pekka Hilmola,et al.  Financial and environmental impacts of hypothetical Finnish dry port structure , 2011 .

[35]  M. Ilmer,et al.  Performance Conditions for Container Terminals , 2004 .

[36]  Bart Jourquin,et al.  Equilibrium traffic assignment on large Virtual Networks: Implementation issues and limits for multi-modal freight transport , 2006 .

[37]  J. G. Klincewicz,et al.  Heuristics for the p-hub location problem , 1991 .

[38]  Andreas T. Ernst,et al.  Efficient algorithms for the uncapac-itated single allocation p-hub median problem , 1996 .

[39]  D. Skorin-Kapov,et al.  Lower bounds for the hub location problem , 1995 .

[40]  Rajan Batta,et al.  An aggregation approach to solving the network p-median problem with link demands , 2000, Networks.

[41]  M. O'Kelly,et al.  A quadratic integer program for the location of interacting hub facilities , 1987 .

[42]  J. J. Trip,et al.  Is a new applied transportation research field emerging?--A review of intermodal rail-truck freight transport literature , 2004 .

[43]  Herbert Miehsler,et al.  EUROPEAN CONFERENCE OF MINISTERS OF TRANSPORT , 1983 .