Advancing dental implant surface technology--from micron- to nanotopography.

Current trends in clinical dental implant therapy include use of endosseous dental implant surfaces embellished with nanoscale topographies. The goal of this review is to consider the role of nanoscale topographic modification of titanium substrates for the purpose of improving osseointegration. Nanotechnology offers engineers and biologists new ways of interacting with relevant biological processes. Moreover, nanotechnology has provided means of understanding and achieving cell specific functions. The various techniques that can impart nanoscale topographic features to titanium endosseous implants are described. Existing data supporting the role of nanotopography suggest that critical steps in osseointegration can be modulated by nanoscale modification of the implant surface. Important distinctions between nanoscale and micron-scale modification of the implant surface are presently considered. The advantages and disadvantages of nanoscale modification of the dental implant surface are discussed. Finally, available data concerning the current dental implant surfaces that utilize nanotopography in clinical dentistry are described. Nanoscale modification of titanium endosseous implant surfaces can alter cellular and tissue responses that may benefit osseointegration and dental implant therapy.

[1]  Rena Bizios,et al.  Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. , 2005, Journal of biomedical materials research. Part A.

[2]  H. Weber,et al.  Immediate restoration and loading of dental implants: clinical considerations and protocols. , 2004, The International journal of oral & maxillofacial implants.

[3]  D. Landolt,et al.  Osteoblast-like cells are sensitive to submicron-scale surface structure. , 2006, Clinical oral implants research.

[4]  Martin A. Schwartz,et al.  Networks and crosstalk: integrin signalling spreads , 2002, Nature Cell Biology.

[5]  T. Webster,et al.  Enhanced functions of osteoblasts on nanophase ceramics. , 2000, Biomaterials.

[6]  Yong Wang,et al.  Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). , 2005, Biomaterials.

[7]  A. Wennerberg,et al.  Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. , 2004, The International journal of oral & maxillofacial implants.

[8]  J. Ricci,et al.  Connective-tissue responses to defined biomaterial surfaces. I. Growth of rat fibroblast and bone marrow cell colonies on microgrooved substrates. , 2008, Journal of biomedical materials research. Part A.

[9]  Nikolaj Gadegaard,et al.  Osteoprogenitor response to low-adhesion nanotopographies originally fabricated by electron beam lithography , 2007, Journal of materials science. Materials in medicine.

[10]  Thomas J Webster,et al.  Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. , 2006, Journal of biomedical materials research. Part A.

[11]  C. Murphy,et al.  Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design. , 2006, Tissue engineering.

[12]  H. Hansson,et al.  Electron microscopic analysis of the bone-titanium interface. , 1983, Acta orthopaedica Scandinavica.

[13]  Jörgen Lindström,et al.  Intra-osseous anchorage of dental prostheses. I. Experimental studies , 1971 .

[14]  C. Wilkinson,et al.  The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. , 2007, Nature materials.

[15]  D. Velten,et al.  Biomimetic implant coatings. , 2007, Biomolecular engineering.

[16]  T. Testori,et al.  Influence of a nanometer-scale surface enhancement on de novo bone formation on titanium implants: a histomorphometric study in human maxillae. , 2007, The International journal of periodontics & restorative dentistry.

[17]  C. D. Reyes,et al.  Bio-adhesive Surfaces to Promote Osteoblast Differentiation and Bone Formation , 2005, Journal of dental research.

[18]  T. Webster,et al.  The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro. , 2006, Biomaterials.

[19]  Antonio Nanci,et al.  Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. , 2004, Biomaterials.

[20]  N Freiberg,et al.  Osseointegrated oral implants. A Swedish multicenter study of 8139 consecutively inserted Nobelpharma implants. , 1988, Journal of periodontology.

[21]  H. M. Kim,et al.  Bioactive macroporous titanium surface layer on titanium substrate. , 2000, Journal of biomedical materials research.

[22]  Lina Zhang,et al.  Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. , 2007, Macromolecular bioscience.

[23]  F Rupp,et al.  High surface energy enhances cell response to titanium substrate microstructure. , 2005, Journal of biomedical materials research. Part A.

[24]  D. Lickorish,et al.  A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: Evolution of scaffold design. , 2007, Biomaterials.

[25]  S. Hansson,et al.  The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model. , 1999, Journal of biomechanics.

[26]  L. Schlapbach,et al.  Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application. , 2000, Biomaterials.

[27]  Andy H. Choi,et al.  Sol-gel production of bioactive nanocoatings for medical applications. Part II: current research and development. , 2007, Nanomedicine.

[28]  U. Joos,et al.  Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. , 2004, Biomaterials.

[29]  T. Webster,et al.  Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. , 2004, Journal of biomedical materials research. Part A.

[30]  L. Sennerby,et al.  [Direct bone anchorage of oral implants: clinical and experimental considerations of the concept of osseointegration]. , 1990, Parodontologie.

[31]  F. Bäckhed,et al.  Nanoscale features influence epithelial cell morphology and cytokine production. , 2003, Biomaterials.

[32]  Christopher J Murphy,et al.  The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. , 2006, Biomaterials.

[33]  S. Hayakawa,et al.  Bioactive titania-gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. , 2002, Biomaterials.

[34]  Donald E Ingber,et al.  Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering. , 2006, Tissue engineering.

[35]  In-Seop Lee,et al.  The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. , 2005, The International journal of oral & maxillofacial implants.

[36]  I. Nishimura,et al.  Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. , 2003, The International journal of oral & maxillofacial implants.

[37]  B. Boyan,et al.  Modulation of matrix vesicle enzyme activity and phosphatidylserine content by ceramic implant materials during endosteal bone healing , 1992, Calcified Tissue International.

[38]  J. Davies,et al.  Bone bonding at natural and biomaterial surfaces. , 2007, Biomaterials.

[39]  D. Puleo,et al.  Understanding and controlling the bone-implant interface. , 1999, Biomaterials.

[40]  C. Giordano,et al.  In vitro and in vivo performance of a novel surface treatment to enhance osseointegration of endosseous implants. , 2007, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[41]  T. Albrektsson,et al.  A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. , 1997, The International journal of oral & maxillofacial implants.

[42]  Sandra Downes,et al.  Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. , 2002, Journal of biomedical materials research.

[43]  T. Webster,et al.  Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. , 2004, Biomaterials.

[44]  J. Davies,et al.  The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces. , 2007, Biomaterials.

[45]  L. Tasker,et al.  Applications of nanotechnology in orthopaedics. , 2007, Clinical orthopaedics and related research.

[46]  C J Goodacre,et al.  Clinical complications of osseointegrated implants. , 1999, The Journal of prosthetic dentistry.

[47]  D Buser,et al.  What is This? Downloaded from jdr.sagepub.com at PENNSYLVANIA STATE UNIV on February 23, 2013 For personal use only. No other uses without permission. International and American Associations for Dental ResearchRESEARCH REPORTS , 2004 .

[48]  R. Advíncula,et al.  Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide. , 2006, Biomaterials.

[49]  B. Boyan,et al.  Surface microtopography regulates osteointegration: the role of implant surface microtopography in osteointegration. , 2005, The Alpha omegan.

[50]  T. Webster,et al.  Osteoblast adhesion on nanophase ceramics. , 1999, Biomaterials.

[51]  Thomas J Webster,et al.  Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. , 2006, Biomaterials.

[52]  Newell R Washburn,et al.  High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. , 2004, Biomaterials.

[53]  T. Webster,et al.  Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. , 2000, Journal of biomedical materials research.

[54]  T. Webster,et al.  Increased osteoblast adhesion on nanograined hydroxyapatite and tricalcium phosphate containing calcium titanate. , 2007, Journal of biomedical materials research. Part A.

[55]  Hyoun‐Ee Kim,et al.  Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. , 2004, Biomaterials.

[56]  Cato T Laurencin,et al.  Nanobiomaterial applications in orthopedics , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[57]  S. Hayakawa,et al.  A comparative study of in vitro apatite deposition on heat-, H(2)O(2)-, and NaOH-treated titanium surfaces. , 2001, Journal of biomedical materials research.

[58]  S. vandeVondele,et al.  RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces. , 2004, Journal of biomedical materials research. Part A.

[59]  R. Tuan,et al.  Regulation of human osteoblast integrin expression by orthopedic implant materials. , 1996, Bone.

[60]  D. Brunette,et al.  The effects of implant surface topography on the behavior of cells. , 1988, The International journal of oral & maxillofacial implants.

[61]  Jun Hu,et al.  Alignment of osteoblast-like cells and cell-produced collagen matrix induced by nanogrooves. , 2005, Tissue engineering.

[62]  Thomas J Webster,et al.  Osteoblast function on nanophase alumina materials: Influence of chemistry, phase, and topography. , 2003, Journal of biomedical materials research. Part A.

[63]  D Buser,et al.  Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. , 1991, Journal of biomedical materials research.

[64]  L. Meirelles On Nano Size Structures For Enhanced Early Bone Formation , 2007 .

[65]  I. Nishimura,et al.  Genes Differentially Expressed in Titanium Implant Healing , 2006, Journal of dental research.

[66]  R. Jaffin,et al.  The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. , 1991, Journal of periodontology.

[67]  T. Webster,et al.  Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. , 2006, Journal of biomedical materials research. Part A.

[68]  J. Ellingsen,et al.  Increasing Biocompatibility by Chemical Modification of Titanium Surfaces , 2002 .

[69]  Benjamin Geiger,et al.  Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. , 2007, Biophysical journal.

[70]  A. Holmen,et al.  Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. , 2006, Biomaterials.

[71]  H. Alexander,et al.  Bone response to laser microtextured surfaces , 2000 .

[72]  A. Weisgold,et al.  Intraosseous anchorage of dental prostheses: an early 20th century contribution. , 2008, Compendium of continuing education in dentistry.

[73]  A Schmitt,et al.  The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part III: Problems and complications encountered. , 1990, The Journal of prosthetic dentistry.

[74]  I. Lagadic,et al.  Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry. , 1996 .

[75]  D. Cochran,et al.  A comparison of endosseous dental implant surfaces. , 1999, Journal of periodontology.

[76]  C. Murphy,et al.  Epithelial contact guidance on well-defined micro- and nanostructured substrates , 2003, Journal of Cell Science.

[77]  S. Tosatti,et al.  Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. , 2006, Clinical oral implants research.

[78]  E. Hunziker,et al.  Effect of surface topology on the osseointegration of implant materials in trabecular bone. , 1995, Journal of biomedical materials research.

[79]  James Runt,et al.  Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces , 2005, Journal of The Royal Society Interface.

[80]  R. Oreffo,et al.  The interaction of human bone marrow cells with nanotopographical features in three dimensional constructs. , 2006, Journal of biomedical materials research. Part A.

[81]  Joshua C. Hansen,et al.  Effect of surface nanoscale topography on elastic modulus of individual osteoblastic cells as determined by atomic force microscopy. , 2007, Journal of biomechanics.

[82]  Thomas J Webster,et al.  Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. , 2004, Biomaterials.

[83]  A. Nanci,et al.  Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. , 2007, Journal of biomedical materials research. Part A.

[84]  L. Cooper,et al.  Cell and matrix reactions at titanium implants in surgically prepared rat tibiae. , 1997, The International journal of oral & maxillofacial implants.

[85]  J. Ellingsen,et al.  Bio-Implant Interface: Improving Biomaterials and Tissue Reactions , 2003 .

[86]  W. Saltzman,et al.  Biomaterials with hierarchically defined micro- and nanoscale structure. , 2004, Biomaterials.

[87]  L F Cooper,et al.  Biologic determinants of bone formation for osseointegration: clues for future clinical improvements. , 1998, The Journal of prosthetic dentistry.

[88]  W. Tseng,et al.  Water-based sol-gel synthesis of hydroxyapatite: process development. , 2001, Biomaterials.

[89]  L. C. Jonghe,et al.  Sintering of Nanophase Γ-Al₂O₃ Powder , 1996 .

[90]  Sungho Jin,et al.  Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. , 2005, Biomaterials.

[91]  Thomas J Webster,et al.  Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. , 2002, Tissue engineering.

[92]  P I Brånemark,et al.  A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. , 1981, International journal of oral surgery.

[93]  L. Bonewald,et al.  Implant Surface Characteristics Modulate Differentiation Behavior of Cells in the Osteoblastic Lineage , 1999, Advances in dental research.

[94]  P. Tengvall,et al.  In vivo cytokine secretion and NF-kappaB activation around titanium and copper implants. , 2005, Biomaterials.

[95]  Tomoko Kasuga,et al.  Titanium oxide nanotubes for bone regeneration , 2004, Journal of materials science. Materials in medicine.

[96]  K. Burridge,et al.  The distribution of distinct integrins in focal contacts is determined by the substratum composition. , 1989, Journal of cell science.

[97]  J. Jansen,et al.  Implant Surface Roughness and Bone Healing: a Systematic Review , 2006, Journal of dental research.

[98]  T Albrektsson,et al.  A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. , 1991, Clinical oral implants research.

[99]  J. Lindhe,et al.  Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. , 2007, Clinical oral implants research.

[100]  P. Wilshaw,et al.  Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating , 2004, Journal of materials science. Materials in medicine.

[101]  R. L. Price,et al.  Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina , 2003, Medical and Biological Engineering and Computing.

[102]  Tomas Albrektsson,et al.  Osseointegrated Oral implants , 1988 .

[103]  J. Davies,et al.  Understanding peri-implant endosseous healing. , 2003, Journal of dental education.

[104]  M. McKee,et al.  Chemical modification of titanium surfaces for covalent attachment of biological molecules. , 1998, Journal of biomedical materials research.

[105]  C. Wilkinson,et al.  Osteoprogenitor response to defined topographies with nanoscale depths. , 2006, Biomaterials.

[106]  R. Cortivo,et al.  In vitro culture of mesenchymal cells onto nanocrystalline hydroxyapatite-coated Ti13Nb13Zr alloy. , 2007, Journal of biomedical materials research. Part A.

[107]  T. Webster,et al.  A Review of Nanotechnology for the Development of Better Orthopedic Implants , 2005 .

[108]  J. Klein-Nulend,et al.  MECHANOTRANSDUCTION IN BONE : ROLE OF THE LACUNOCANALICULAR NETWORK , 1999 .

[109]  T. Testori,et al.  Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla. , 2003, Journal of periodontology.

[110]  V. Varadan,et al.  Multifunctional Nanowire Bioscaffolds on Titanium , 2007 .

[111]  D. Seabold,et al.  Implant Surface Roughness Affects Osteoblast Gene Expression , 2003, Journal of dental research.

[112]  B. Kasemo Biocompatibility of titanium implants: surface science aspects. , 1983, The Journal of prosthetic dentistry.

[113]  C. Gemmell,et al.  Platelet interactions with titanium: modulation of platelet activity by surface topography. , 2001, Biomaterials.

[114]  T. Desai,et al.  Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces. , 2007, Journal of biomedical materials research. Part A.

[115]  Thomas J Webster,et al.  Increased osteoblast function on PLGA composites containing nanophase titania. , 2005, Journal of biomedical materials research. Part A.

[116]  E. Hjørting-Hansen,et al.  Clinical and radiographic evaluation of submerged and nonsubmerged implants in monkeys. , 1990, The International journal of prosthodontics.

[117]  L. Cooper,et al.  Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model. , 2001, The Journal of prosthetic dentistry.

[118]  P. Coelho,et al.  Evaluation of an IBAD thin-film process as an alternative method for surface incorporation of bioceramics on dental implants: a study in dogs. , 2005, Journal of applied oral science : revista FOB.

[119]  T. Webster,et al.  Increased osteoblast adhesion on titanium-coated hydroxylapatite that forms CaTiO3. , 2003, Journal of biomedical materials research. Part A.

[120]  Hae-Won Kim,et al.  Hydroxyapatite-TiO2 Hybrid Coating on Ti Implants , 2006, Journal of biomaterials applications.

[121]  J. Fiorellini,et al.  A retrospective study of dental implants in diabetic patients. , 2000, The International journal of periodontics & restorative dentistry.

[122]  S. Caputi,et al.  Randomized, controlled histologic and histomorphometric evaluation of implants with nanometer-scale calcium phosphate added to the dual acid-etched surface in the human posterior maxilla. , 2007, Journal of periodontology.

[123]  Besim Ben Nissan,et al.  The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. , 2005, Biomaterials.

[124]  Yuhong Huang,et al.  Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration , 2007 .

[125]  Yusuke Arima,et al.  Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. , 2007, Biomaterials.

[126]  C. Bain,et al.  Smoking and implant failure--benefits of a smoking cessation protocol. , 1996, The International journal of oral & maxillofacial implants.

[127]  P. Layrolle,et al.  Surface treatments of titanium dental implants for rapid osseointegration. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[128]  L. Meirelles,et al.  On nano size structures for enhanced bone formation , 2007 .

[129]  L. Tolstunov Dental Implant Success-Failure Analysis: A Concept of Implant Vulnerability , 2006, Implant dentistry.

[130]  P. Branemark,et al.  Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. , 1990, The International journal of oral & maxillofacial implants.

[131]  K. Jandt,et al.  Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? , 2006, Colloids and surfaces. B, Biointerfaces.

[132]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[133]  T. Albrektsson,et al.  Oral implant surfaces: Part 2--review focusing on clinical knowledge of different surfaces. , 2004, The International journal of prosthodontics.

[134]  T. Webster,et al.  Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. , 2001, Tissue engineering.

[135]  B. Boyan,et al.  Integrin beta1 silencing in osteoblasts alters substrate-dependent responses to 1,25-dihydroxy vitamin D3. , 2006, Biomaterials.

[136]  J. Pou,et al.  Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. , 2003, Biomaterials.

[137]  Andy H Choi,et al.  Sol-gel production of bioactive nanocoatings for medical applications. Part 1: an introduction. , 2006, Nanomedicine.

[138]  Joshua C. Hansen,et al.  The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. , 2007, Biomaterials.

[139]  L. Cooper,et al.  The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. , 2007, Biomaterials.

[140]  Andreas Sewing,et al.  Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. , 2005, Clinical oral implants research.

[141]  Niklaus P Lang,et al.  De novo alveolar bone formation adjacent to endosseous implants. , 2003, Clinical oral implants research.

[142]  D. Seabold,et al.  Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression. , 2006, The International journal of oral & maxillofacial implants.

[143]  F. Mante,et al.  Oxidation of titanium, RGD peptide attachment, and matrix mineralization rat bone marrow stromal cells. , 2004, The Journal of oral implantology.

[144]  T. Webster,et al.  Increased osteoblast functions on theta + delta nanofiber alumina. , 2005, Biomaterials.

[145]  Ann Wennerberg,et al.  Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. , 2004, The International journal of prosthodontics.

[146]  B. Ratner,et al.  Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. , 2006, Biomaterials.

[147]  Peter Thomsen,et al.  Advances in dental implant materials and tissue regeneration. , 2006, Periodontology 2000.

[148]  H. E. Kim,et al.  Effects of ion beam-assisted deposition of hydroxyapatite on the osseointegration of endosseous implants in rabbit tibiae. , 2001, The International journal of oral & maxillofacial implants.

[149]  T. Webster,et al.  Helical rosette nanotubes: a biomimetic coating for orthopedics? , 2005, Biomaterials.

[150]  Takashi Nakamura,et al.  Apatite formation on zirconium metal treated with aqueous NaOH. , 2002, Biomaterials.

[151]  K. Gonsalves,et al.  Ftir study of a nanostructured aluminum nitride powder surface: Determination of the acidic/basic sites by CO, CO2 and acetic acid adsorptions , 1997 .

[152]  T. Albrektsson,et al.  Increased bone formation to unstable nano rough titanium implants. , 2007, Clinical oral implants research.

[153]  T. Webster,et al.  Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation , 2005 .

[154]  A. Hart Filapodial Sensing of Nanotopography in Osteoprogenitor Cells , 2005 .

[155]  R. Funk,et al.  Effects of Different Titanium Alloys and Nanosize Surface Patterning on Adhesion, Differentiation, and Orientation of Osteoblast-Like Cells , 2005, Cells Tissues Organs.

[156]  Milan Mrksich,et al.  Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates , 1999, In Vitro Cellular & Developmental Biology - Animal.

[157]  B. Boyan,et al.  Response of bone and cartilage cells to biomaterials in vivo and in vitro. , 1993, The Journal of oral implantology.