Bayesian model inversion using stochastic spectral embedding
暂无分享,去创建一个
[1] Bruno Sudret,et al. Spectral likelihood expansions for Bayesian inference , 2015, J. Comput. Phys..
[2] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[3] Stefano Marelli,et al. Sequential Design of Experiment for Sparse Polynomial Chaos Expansions , 2017, SIAM/ASA J. Uncertain. Quantification.
[4] Patrick R. Conrad,et al. Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations , 2014, 1402.1694.
[5] Jonathan R Goodman,et al. Ensemble samplers with affine invariance , 2010 .
[6] J. Beck,et al. Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .
[7] Jian Guo. Bayesian Inference—Data Evaluation and Decisions (2nd ed.) , 2019, Technometrics.
[8] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[9] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[10] J. Beck,et al. Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .
[11] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[12] J. Ching,et al. Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging , 2007 .
[13] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[14] Hanns Ludwig Harney. Bayesian Inference: Data Evaluation and Decisions , 2016 .
[15] L. Tierney,et al. Approximate marginal densities of nonlinear functions , 1989 .
[16] Tiangang Cui,et al. Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.
[17] Jean-Michel Marin,et al. Approximate Bayesian computational methods , 2011, Statistics and Computing.
[18] Stefano Marelli,et al. Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark , 2021, SIAM/ASA J. Uncertain. Quantification.
[19] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[20] Michael Peters,et al. Higher-Order Quasi-Monte Carlo for Bayesian Shape Inversion , 2018, SIAM/ASA J. Uncertain. Quantification.
[21] Jianhua Lin,et al. Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.
[22] B. Sudret,et al. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .
[23] Matthew Parno,et al. Transport maps for accelerated Bayesian computation , 2015 .
[24] Liang Yan,et al. Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems , 2018, J. Comput. Phys..
[25] Khachik Sargsyan,et al. Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..
[26] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[27] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[28] H. Jeffreys. An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[29] B. Sudret,et al. Bayesian calibration and sensitivity analysis of heat transfer models for fire insulation panels , 2019, Engineering Structures.
[30] Stefano Marelli,et al. Data-driven polynomial chaos expansion for machine learning regression , 2018, J. Comput. Phys..
[31] Aaron Smith,et al. Parallel Local Approximation MCMC for Expensive Models , 2016, SIAM/ASA J. Uncertain. Quantification.
[32] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[33] Yanan Fan,et al. Handbook of Approximate Bayesian Computation , 2018 .
[34] L. Tierney,et al. Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .
[35] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[36] Andrew Gelman,et al. General methods for monitoring convergence of iterative simulations , 1998 .
[37] Youssef M. Marzouk,et al. Bayesian inference with optimal maps , 2011, J. Comput. Phys..
[38] L. Tierney,et al. Fully Exponential Laplace Approximations to Expectations and Variances of Nonpositive Functions , 1989 .
[39] Josef Dick,et al. Multilevel higher-order quasi-Monte Carlo Bayesian estimation , 2016, 1611.08324.
[40] Stefano Marelli,et al. UQLab: a framework for uncertainty quantification in MATLAB , 2014 .
[41] Jinglai Li,et al. Adaptive Construction of Surrogates for the Bayesian Solution of Inverse Problems , 2013, SIAM J. Sci. Comput..
[42] Y. Marzouk,et al. A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .
[43] K. J. Keen. Texts in Statistical Science , 2018 .
[44] E. Jaynes. Probability theory : the logic of science , 2003 .
[45] Dongbin Xiu,et al. Nonadaptive Quasi-Optimal Points Selection for Least Squares Linear Regression , 2016, SIAM J. Sci. Comput..
[46] Yoshua Bengio,et al. Model Selection for Small Sample Regression , 2002, Machine Learning.
[47] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[48] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[49] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[50] Matthew P. Wand,et al. Kernel Smoothing , 1995 .
[51] D. Lucor,et al. Adaptive Bayesian Inference for Discontinuous Inverse Problems, Application to Hyperbolic Conservation Laws , 2014 .
[52] S. Marelli,et al. STOCHASTIC SPECTRAL EMBEDDING , 2020, International Journal for Uncertainty Quantification.
[53] A. O'Hagan,et al. Bayesian calibration of computer models , 2001 .
[54] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[55] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .
[56] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..