Entanglement generation with a quantum channel and a shared state

We introduce a new protocol, the channel-state coding protocol, to quantum Shannon theory. This protocol generates entanglement between a sender and receiver by coding for a noisy quantum channel with the aid of a noisy shared state. The mother and father protocols arise as special cases of the channel-state coding protocol, where the channel is noiseless or the state is a noiseless maximally entangled state, respectively. The channel-state coding protocol paves the way for formulating entanglement-assisted quantum error-correcting codes that are robust to noise in shared entanglement. Finally, the channel-state coding protocol leads to a Smith-Yard superactivation, where we can generate entanglement using a zero-capacity erasure channel and a non-distillable bound entangled state.

[1]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[2]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Mark M. Wilde,et al.  The quantum dynamic capacity formula of a quantum channel , 2010, Quantum Inf. Process..

[4]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[5]  Jonathan Oppenheim State redistribution as merging: introducing the coherent relay , 2008 .

[6]  Jon Yard Simultaneous classical-quantum capacities of quantum multiple access channels , 2005 .

[7]  I. Devetak,et al.  Distilling common randomness from bipartite quantum states , 2003, IEEE Transactions on Information Theory.

[8]  I Devetak,et al.  Relating quantum privacy and quantum coherence: an operational approach. , 2004, Physical review letters.

[9]  Schumacher,et al.  Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[10]  A. Winter,et al.  Private capacity of quantum channels is not additive. , 2009, Physical review letters.

[11]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  A. Winter,et al.  Quantum privacy and quantum wiretap channels , 2004 .

[13]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[14]  Mark M. Wilde,et al.  Trading classical communication, quantum communication, and entanglement in quantum Shannon theory , 2009, IEEE Transactions on Information Theory.

[15]  Michal Horodecki,et al.  A Decoupling Approach to the Quantum Capacity , 2007, Open Syst. Inf. Dyn..

[16]  Andreas J. Winter,et al.  The Quantum Capacity With Symmetric Side Channels , 2008, IEEE Transactions on Information Theory.

[17]  Peter W. Shor The classical capacity achievable by a quantum channel assisted by a limited entanglement , 2004, Quantum Inf. Comput..

[18]  Guang-Can Guo,et al.  Nonadditivity of the Private Classical Capacity of a Quantum Channel , 2009 .

[19]  Aram W. Harrow,et al.  A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[20]  Ashish V. Thapliyal,et al.  Superactivation of bound entanglement. , 2000, Physical review letters.

[21]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[22]  Graeme Smith,et al.  Quantum Communication with Zero-Capacity Channels , 2008, Science.

[23]  J. Oppenheim,et al.  Secure key from bound entanglement. , 2003, Physical Review Letters.

[24]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[25]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[26]  Daniel A. Lidar,et al.  Encoding one logical qubit into six physical qubits , 2008, 0803.1495.

[27]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[28]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[29]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.