Massive stellar systems: observational challenges and perspectives in the E-ELT era

Abstract We introduce the empirical framework concerning optical and near-infrared (NIR) photometry of crowded stellar fields. In particular, we address the impact that linear detectors and analytical PSF played in improving the accuracy and the precision of multi-band color-magnitude diagrams (CMDs). We focus our attention on recent findings based on deep NIR images collected with Adaptive Optics (AO) systems at the 8-10m class telescopes and discuss pros and cons of the different approaches. We also discuss the estimate of the absolute age of globular clusters using a well defined knee along the lower main sequence. We mention the role which the current AO-assisted instruments will have in addressing longstanding astrophysical problems of the Galactic center. Finally, we outline the role of first generation of E-ELT instruments upon photometry and spectroscopy of crowded stellar fields.

[1]  C. D. Laney,et al.  On the α-element gradients of the Galactic thin disk using Cepheids , 2015, 1503.03758.

[2]  W. Hamann,et al.  The Quintuplet cluster - II. Analysis of the WN stars , 2010, 1011.5796.

[3]  S. Djorgovski,et al.  Hubble Space Telescope WFPC2 Color-Magnitude Diagrams for Globular Clusters in M31 , 2005, astro-ph/0502180.

[4]  Hubble Space Telescope Observations of the White Dwarf Cooling Sequence of M4 , 2004, astro-ph/0401443.

[5]  E. Marchetti,et al.  ON A NEW NEAR-INFRARED METHOD TO ESTIMATE THE ABSOLUTE AGES OF STAR CLUSTERS: NGC 3201 AS A FIRST TEST CASE , 2009, 0912.0824.

[6]  Garching,et al.  Homogeneous age dating of 55 Galactic globular clusters. Clues to the Galaxy formation mechanisms , 2002, astro-ph/0204410.

[7]  Ian S. McLean,et al.  Massive Stars in the Quintuplet Cluster , 1999 .

[8]  J. Melnick,et al.  The massive star initial mass function of the Arches cluster , 2009, 0903.2222.

[9]  D. Saumon,et al.  NEW H2 COLLISION-INDUCED ABSORPTION AND NH3 OPACITY AND THE SPECTRA OF THE COOLEST BROWN DWARFS , 2012, 1202.6293.

[10]  Laura Greggio,et al.  Studying the metallicity gradient in Virgo ellipticals with European-Extremely Large Telescope photometry of resolved stars , 2013, 1311.1003.

[11]  Italy,et al.  Merging of Globular Clusters in Inner Galactic Regions. II. Nuclear Star Cluster Formation , 2008, 0801.1072.

[12]  R. Kudritzki,et al.  METALLICITY IN THE GALACTIC CENTER: THE QUINTUPLET CLUSTER , 2008, 0809.3185.

[13]  V. Hill,et al.  The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.

[14]  The Age of Globular Clusters in Light of Hipparcos: Resolving the Age Problem? , 1997, astro-ph/9706128.

[15]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[16]  Giampaolo Piotto,et al.  THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. RELATIVE AGES , 2008, 0812.4541.

[17]  Jessica R. Lu,et al.  DISCOVERY OF LOW-METALLICITY STARS IN THE CENTRAL PARSEC OF THE MILKY WAY , 2015, 1506.07891.

[18]  Naoto Kobayashi,et al.  Cepheids and other short-period variables near the Galactic Centre , 2012, 1211.0151.

[19]  O. Schnurr,et al.  The 13Carbon footprint of B[e] supergiants , 2010, 1007.1360.

[20]  D. Kelson,et al.  Stellar Evolution in NGC 6791: Mass Loss on the Red Giant Branch and the Formation of Low-Mass White Dwarfs , 2007, 0705.0977.

[21]  Transforming observational data and theoretical isochrones into the ACS/WFC Vega-mag system , 2004, astro-ph/0412328.

[22]  N. Neumayer,et al.  Surface brightness profile of the Milky Way’s nuclear star cluster , 2014, 1403.6657.

[23]  A. Sandage,et al.  The color-magnitude diagram of the globular cluster M 92 , 1953 .

[24]  G. Bono,et al.  On the white dwarf cooling sequence with extremely large telescopes , 2012, 1211.2691.

[25]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[26]  R. Poleski,et al.  Over 38000 RR Lyrae Stars in the OGLE Galactic Bulge Fields , 2014, 1410.1542.

[27]  R. Kudritzki,et al.  Metallicity in the Galactic Center: The Arches Cluster , 2004, astro-ph/0407188.

[28]  M. Schultheis,et al.  Chemical Abundances of M giants in the Galactic Center: a Single Metal-Rich Population with Low [alpha/Fe] , 2014, 1409.2515.

[29]  Luigi Pulone,et al.  ON THE ABSOLUTE AGE OF THE METAL-RICH GLOBULAR M71 (NGC 6838). I. OPTICAL PHOTOMETRY , 2015, 1506.01180.

[30]  Johnson,et al.  Neutron-Capture Element Abundances in the Globular Cluster M15 , 2000, The Astrophysical journal.

[31]  Luca Casagrande,et al.  THE AGES OF 55 GLOBULAR CLUSTERS AS DETERMINED USING AN IMPROVED METHOD ALONG WITH COLOR–MAGNITUDE DIAGRAM CONSTRAINTS, AND THEIR IMPLICATIONS FOR BROADER ISSUES , 2013, 1308.2257.

[32]  Eugene Serabyn,et al.  Massive Stars in the Arches Cluster , 2002, astro-ph/0208145.

[33]  R. Genzel,et al.  The most massive stars in the Arches cluster , 2007, 0711.0657.

[34]  Andrew E. Dolphin,et al.  WFPC2 Stellar Photometry with HSTphot , 2000, astro-ph/0006217.

[35]  T. Beers,et al.  Measurement of stellar age from uranium decay , 2001, Nature.

[36]  P. Kowalski,et al.  A LARGE STELLAR EVOLUTION DATABASE FOR POPULATION SYNTHESIS STUDIES. VI. WHITE DWARF COOLING SEQUENCES , 2010, 1005.1791.

[37]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[38]  S. Cassisi,et al.  The Initial Mass Function of the Galactic Bulge down to ~0.15 M☉ , 1999, astro-ph/9906452.

[39]  A. Walker,et al.  A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT , 2015, 1506.02664.

[40]  N. Suntzeff,et al.  OLD AND INTERMEDIATE-AGE STELLAR POPULATIONS IN THE MAGELLANIC CLOUDS , 1996 .

[41]  R. Zinn,et al.  Hubble Space Telescope Photometry of the Fornax Dwarf Spheroidal Galaxy: Cluster 4 and Its Field , 1999 .

[42]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[43]  A. Sandage The color-magnitude diagram for the globular cluster M 3. , 1953 .

[44]  D. Fantinel,et al.  Resolved Stellar Population of Distant Galaxies in the ELT Era , 2012, 1206.0909.

[45]  P. Stetson,et al.  THE AGE OF THE GALACTIC GLOBULAR CLUSTER SYSTEM , 1996 .

[46]  E. Athanassoula The existence and shapes of dust lanes in galactic bars , 1992 .

[47]  J. Anderson,et al.  An age difference of two billion years between a metal-rich and a metal-poor globular cluster , 2013, Nature.

[48]  Jean-Pierre Véran,et al.  TOWARD PRECISION PHOTOMETRY FOR THE ELT ERA: THE DOUBLE SUBGIANT BRANCH OF NGC 1851 OBSERVED WITH THE GEMINI/GeMS MCAO SYSTEM , 2015 .

[49]  R. Kudritzki,et al.  THE CHEMICAL ABUNDANCES IN THE GALACTIC CENTER FROM THE ATMOSPHERES OF RED SUPERGIANTS , 2008, 0811.3179.

[50]  E. Serabyn,et al.  An Extended Star Formation History for the Galactic Center from Hubble Space Telescope NICMOS Observations , 2003, astro-ph/0309757.

[51]  R. Poleski,et al.  DECIPHERING THE 3D STRUCTURE OF THE OLD GALACTIC BULGE FROM THE OGLE RR LYRAE STARS , 2014, 1412.4121.

[52]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[53]  L. Busoni,et al.  THE ABSOLUTE AGE OF THE GLOBULAR CLUSTER M15 USING NEAR-INFRARED ADAPTIVE OPTICS IMAGES FROM PISCES/LBT , 2015, 1507.08845.

[54]  Giampaolo Piotto,et al.  THE ACS SURVEY OF GLOBULAR CLUSTERS. V. GENERATING A COMPREHENSIVE STAR CATALOG FOR EACH CLUSTER , 2008 .

[55]  G. Bono,et al.  KINEMATICS OF CLASSICAL CEPHEIDS IN THE NUCLEAR STELLAR DISK , 2014, 1411.3789.