Implementation of a Transmon Qubit Using Superconducting Granular Aluminum

The high kinetic inductance offered by granular aluminum (grAl) has recently been employed for linear inductors in superconducting high-impedance qubits and kinetic inductance detectors. Due to its large critical current density compared to typical Josephson junctions, its resilience to external magnetic fields, and its low dissipation, grAl may also provide a robust source of non-linearity for strongly driven quantum circuits, topological superconductivity, and hybrid systems. Having said that, can the grAl non-linearity be sufficient to build a qubit? Here we show that a small grAl volume ($10 \times 200 \times 500 \,\mathrm{nm^3}$) shunted by a thin film aluminum capacitor results in a microwave oscillator with anharmonicity $\alpha$ two orders of magnitude larger than its spectral linewidth $\Gamma_{01}$, effectively forming a transmon qubit. With increasing drive power, we observe several multi-photon transitions starting from the ground state, from which we extract $\alpha = 2 \pi \times 4.48\,\mathrm{MHz}$. Resonance fluorescence measurements of the $|0> \rightarrow |1>$ transition yield an intrinsic qubit linewidth $\gamma = 2 \pi \times 10\,\mathrm{kHz}$, corresponding to a lifetime of $16\,\mathrm{\mu s}$. This linewidth remains below $2 \pi \times 150\,\mathrm{kHz}$ for in-plane magnetic fields up to $\sim70\,\mathrm{mT}$.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  Yvonne Y Gao,et al.  Entangling Bosonic Modes via an Engineered Exchange Interaction , 2020 .

[3]  I. Pop,et al.  Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum. , 2018, Physical review letters.

[4]  R. Barends,et al.  Electric field spectroscopy of material defects in transmon qubits , 2019, npj Quantum Information.

[5]  M. Gershenson,et al.  Granular Aluminum Meandered Superinductors for Quantum Circuits , 2019, Physical Review Applied.

[6]  F. Nori,et al.  Landau-Zener-Stückelberg interferometry , 2009, 0911.1917.

[7]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[8]  Shruti Puri,et al.  Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving , 2017, npj Quantum Information.

[9]  I. Pop,et al.  Interplay Between Kinetic Inductance, Nonlinearity, and Quasiparticle Dynamics in Granular Aluminum Microwave Kinetic Inductance Detectors , 2018, Physical Review Applied.

[10]  N. Kalhor,et al.  Strong spin-photon coupling in silicon , 2017, Science.

[11]  J. García-Ripoll,et al.  Fast High-Fidelity Quantum Nondemolition Qubit Readout via a Nonperturbative Cross-Kerr Coupling , 2019, Physical Review X.

[12]  L. DiCarlo,et al.  High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field , 2015, 1511.01760.

[13]  G. Deutscher,et al.  Enhanced Cooper pairing versus suppressed phase coherence shaping the superconducting dome in coupled aluminum nanograins , 2016 .

[14]  J. Bylander,et al.  High Kinetic Inductance NbN Nanowire Superinductors , 2018, Physical Review Applied.

[15]  T. Duty,et al.  Coherence times of dressed states of a superconducting qubit under extreme driving. , 2007, Physical review letters.

[16]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[17]  Carlos Ramírez,et al.  Bose–Einstein Condensation of Collective Electron Pairs , 2014 .

[18]  P. Alam ‘K’ , 2021, Composites Engineering.

[19]  Liang Jiang,et al.  Entanglement of bosonic modes through an engineered exchange interaction , 2018, Nature.

[20]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[21]  A. Tzalenchuk,et al.  Suppression of low-frequency charge noise in superconducting resonators by surface spin desorption , 2018, Nature Communications.

[22]  W. Wernsdorfer,et al.  Superconducting granular aluminum resonators resilient to magnetic fields up to 1 Tesla , 2020, 2006.05171.

[23]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[24]  M. Devoret,et al.  Kerr-Free Three-Wave Mixing in Superconducting Quantum Circuits , 2019, Physical Review Applied.

[25]  R. Schoelkopf,et al.  Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles , 2014, Nature.

[26]  O. Astafiev,et al.  Resonance Fluorescence of a Single Artificial Atom , 2010, Science.

[27]  P. Alam ‘U’ , 2021, Composites Engineering: An A–Z Guide.

[28]  L. DiCarlo,et al.  Probing dynamics of an electron-spin ensemble via a superconducting resonator. , 2012, Physical review letters.

[29]  A. Wallraff,et al.  Coherent spin–photon coupling using a resonant exchange qubit , 2017, Nature.

[30]  M. Weides,et al.  Rabi oscillations in a superconducting nanowire circuit , 2019, npj Quantum Materials.

[31]  A. Tzalenchuk,et al.  Suppression of 1/f noise in solid state quantum devices by surface spin desorption , 2017, 1705.09158.

[32]  W. Wernsdorfer,et al.  Onset of phase diffusion in high kinetic inductance granular aluminum micro-SQUIDs , 2019, Superconductor Science and Technology.

[33]  M. Weides,et al.  Multiphoton dressing of an anharmonic superconducting many-level quantum circuit , 2014, 1410.3383.

[34]  D. Mattis,et al.  Theory of the anomalous skin effect in normal and superconducting metals , 1958 .

[35]  David Schuster,et al.  Circuit quantum electrodynamics , 2007 .

[36]  G. Deutscher,et al.  Transition to zero dimensionality in granular aluminum superconducting films , 1973 .

[37]  K. Berggren,et al.  Mach-Zehnder Interferometry in a Strongly Driven Superconducting Qubit , 2005, Science.

[38]  T M Klapwijk,et al.  Number fluctuations of sparse quasiparticles in a superconductor. , 2011, Physical review letters.

[39]  R. N. Schouten,et al.  Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit , 2012, Nature Communications.

[40]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[41]  W. Wernsdorfer,et al.  Circuit quantum electrodynamics of granular aluminum resonators , 2018, Nature Communications.

[42]  H. Neven,et al.  Fluctuations of Energy-Relaxation Times in Superconducting Qubits. , 2018, Physical review letters.

[43]  M. Manfra,et al.  Evidence of topological superconductivity in planar Josephson junctions , 2018, Nature.

[44]  G. Catelani,et al.  Efficient quasiparticle traps with low dissipation through gap engineering , 2019, Physical Review B.

[45]  W. Wernsdorfer,et al.  Molecular spintronics using single-molecule magnets. , 2008, Nature materials.

[46]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[47]  C. C. Lo,et al.  Controlling spin relaxation with a cavity , 2015, Nature.

[48]  L. Berg'e,et al.  Microscopic charged fluctuators as a limit to the coherence of disordered superconductor devices , 2018, 1810.12801.

[49]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[50]  Joseph P. Heremans,et al.  Atomic layer deposition of titanium nitride for quantum circuits , 2018, Applied Physics Letters.

[51]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[52]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[53]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[54]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[55]  Jens Koch,et al.  Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets , 2009, Science.

[56]  Francesco Valenti,et al.  Granular aluminium as a superconducting material for high-impedance quantum circuits , 2018, Nature Materials.

[57]  J. Martinis,et al.  Microwave response of vortices in superconducting thin films of Re and Al , 2008, 0812.3645.

[58]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[59]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[60]  T. Taniguchi,et al.  A graphene transmon operating at 1 T , 2018, 1806.10534.

[61]  A. Wallraff,et al.  Controlling the dynamic range of a Josephson parametric amplifier , 2013, 1305.6583.

[62]  Yvonne Y Gao,et al.  Measurement and control of quasiparticle dynamics in a superconducting qubit , 2014, Nature Communications.

[63]  S Onoda,et al.  Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. , 2011, Physical review letters.

[64]  M. Gershenson,et al.  Microresonators Fabricated from High-Kinetic-Inductance Aluminum Films , 2018, Physical Review Applied.

[65]  M. Devoret,et al.  Escape of a Driven Quantum Josephson Circuit into Unconfined States , 2018, Physical Review Applied.

[66]  D. DiVincenzo,et al.  Design of an inductively shunted transmon qubit with tunable transverse and longitudinal coupling , 2017, 1804.09777.

[67]  Yasunobu Nakamura,et al.  Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. , 2014, Physical review letters.

[68]  R. W. Cohen,et al.  Superconductivity in Granular Aluminum Films , 1968 .

[69]  E. C. Caparelli,et al.  An Analytical Calculation of the Magnetic Field Using the Biot Savart Law , 2001 .

[70]  M. Weides,et al.  Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators. , 2019, Physical review letters.

[71]  R. Schoelkopf,et al.  To catch and reverse a quantum jump mid-flight , 2018, Nature.

[72]  M. Weides,et al.  An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts , 2017, 1706.06424.

[73]  Nondegenerate Parametric Amplifiers Based on Dispersion-Engineered Josephson-Junction Arrays , 2019, Physical Review Applied.

[74]  L. Kouwenhoven,et al.  Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions , 2018, Nature Communications.

[75]  Jacob M. Taylor,et al.  A coherent spin–photon interface in silicon , 2017, Nature.

[76]  J. Morton,et al.  Reaching the quantum limit of sensitivity in electron spin resonance. , 2015, Nature nanotechnology.

[77]  H. Meyer,et al.  Consistency of ground state and spectroscopic measurements on flux qubits. , 2008, Physical review letters.

[78]  D. Cory,et al.  Magnetic field dependent microwave losses in superconducting niobium microstrip resonators , 2018, Journal of Applied Physics.

[79]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[80]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[81]  A Ferhat,et al.  Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm. , 2017, Physical review letters.

[82]  A. A. Abdumalikov,et al.  Dynamics of coherent and incoherent emission from an artificial atom in a 1D space. , 2011, Physical review letters.

[83]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[84]  P. Hakonen,et al.  Continuous-time monitoring of Landau-Zener interference in a cooper-pair box. , 2006, Physical review letters.

[85]  W. Wernsdorfer,et al.  Phonon traps reduce the quasiparticle density in superconducting circuits , 2019, Applied Physics Letters.

[86]  Clemens Müller,et al.  Towards understanding two-level-systems in amorphous solids: insights from quantum circuits , 2017, Reports on progress in physics. Physical Society.

[87]  L. Frunzio,et al.  Simultaneous Monitoring of Fluxonium Qubits in a Waveguide , 2016, Physical Review Applied.

[88]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[89]  R. Meservey,et al.  Properties of Very Thin Aluminum Films , 1971 .

[90]  R. Barends,et al.  Mitigation of cosmic ray effect on microwave kinetic inductance detector arrays , 2019, Applied Physics Letters.

[91]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[92]  S. Filipp,et al.  Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit. , 2008, Physical review letters.

[93]  M. Weides,et al.  Transmon qubit in a magnetic field: Evolution of coherence and transition frequency , 2019, Physical Review Research.

[94]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.