An MSSS-preconditioned matrix equation approach for the time-harmonic elastic wave equation at multiple frequencies

In this work, we present a new numerical framework for the efficient solution of the time-harmonic elastic wave equation at multiple frequencies. We show that multiple frequencies (and multiple right-hand sides) can be incorporated when the discretized problem is written as a matrix equation. This matrix equation can be solved efficiently using the preconditioned IDR(s) method. We present an efficient and robust way to apply a single preconditioner using MSSS matrix computations. For 3D problems, we present a memory-efficient implementation that exploits the solution of a sequence of 2D problems. Realistic examples in two and three spatial dimensions demonstrate the performance of the new algorithm.

[1]  Peter K. Kitanidis,et al.  A Flexible Krylov Solver for Shifted Systems with Application to Oscillatory Hydraulic Tomography , 2012, SIAM J. Sci. Comput..

[2]  J. Virieux,et al.  An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling , 2010 .

[3]  Z. Strakos,et al.  Krylov Subspace Methods: Principles and Analysis , 2012 .

[4]  Wim A. Mulder,et al.  Multigrid-based 'shifted-Laplacian' preconditioning for the time-harmonic elastic wave equation , 2016, J. Comput. Phys..

[5]  Gary Martin,et al.  Marmousi-2: An Updated Model for the Investigation of AVO in Structurally Complex Areas , 2002 .

[6]  H. Sadok,et al.  Global FOM and GMRES algorithms for matrix equations , 1999 .

[7]  Jianlin Xia,et al.  Efficient Structured Multifrontal Factorization for General Large Sparse Matrices , 2013, SIAM J. Sci. Comput..

[8]  Michel Verhaegen,et al.  Efficient Preconditioners for PDE-Constrained Optimization Problems with a Multi-level Sequentially Semi-Separable Matrix Structure , 2014 .

[9]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[10]  Jianlin Xia,et al.  Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3-D anisotropic media , 2012 .

[11]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[12]  R. Plessix Three-dimensional frequency-domain full-waveform inversion with an iterative solver , 2009 .

[13]  José M. F. Moura,et al.  Matrices with banded inverses: Inversion algorithms and factorization of Gauss-Markov processes , 2000, IEEE Trans. Inf. Theory.

[14]  Manuel Baumann,et al.  An efficient two-level preconditioner for multi-frequency wave propagation problems , 2019, Applied Numerical Mathematics.

[15]  René-Édouard Plessix,et al.  A Helmholtz iterative solver for 3D seismic-imaging problems , 2007 .

[16]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[17]  René-Édouard Plessix,et al.  Separation-of-variables as a preconditioner for an iterative Helmholtz solver , 2003 .

[18]  Patrick R. Amestoy,et al.  Fast 3D frequency-domain full-waveform inversion with a parallel block low-rank multifrontal direct solver: Application to OBC data from the North Sea , 2016 .

[19]  Martin B. van Gijzen,et al.  Algorithm 913: An elegant IDR(s) variant that efficiently exploits biorthogonality properties , 2011, TOMS.

[20]  Jari Toivanen,et al.  A damping preconditioner for time-harmonic wave equations in fluid and elastic material , 2009, J. Comput. Phys..

[21]  Cornelis Vuik,et al.  Reduction of computing time for least-squares migration based on the Helmholtz equation by graphics processing units , 2015, Computational Geosciences.

[22]  Cornelis Vuik,et al.  A new iterative solver for the time-harmonic wave equation , 2006 .

[23]  John A. Evans,et al.  Isogeometric Analysis , 2010 .

[24]  De Basabe Delgado,et al.  High-order finite element methods for seismic wave propagation , 2009 .

[25]  Gerard L. G. Sleijpen,et al.  Bi-CGSTAB as an induced dimension reduction method , 2010 .

[26]  R. Vandebril,et al.  Matrix Computations and Semiseparable Matrices: Linear Systems , 2010 .

[27]  Gerard L. G. Sleijpen,et al.  Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.

[28]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[29]  P. Sonneveld,et al.  IDR(s): A family of simple and fast algorithms for solving large nonsymmetric linear systems , 2007 .

[30]  Michel Verhaegen,et al.  Distributed Control: A Sequentially Semi-Separable Approach for Spatially Heterogeneous Linear Systems , 2009, IEEE Transactions on Automatic Control.

[31]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[32]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[33]  Alle-Jan van der Veen,et al.  Some Fast Algorithms for Sequentially Semiseparable Representations , 2005, SIAM J. Matrix Anal. Appl..

[34]  I. Gohberg,et al.  On generators of quasiseparable finite block matrices , 2005 .

[35]  René-Édouard Plessix,et al.  How to choose a subset of frequencies in frequency-domain finite-difference migration , 2004 .

[36]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[37]  P. Dewilde,et al.  Time-Varying Systems and Computations , 1998 .

[38]  M. Verhaegen,et al.  Evaluation of multilevel sequentially semiseparable preconditioners on computational fluid dynamics benchmark problems using Incompressible Flow and Iterative Solver Software , 2018 .

[39]  Martin B. van Gijzen,et al.  Induced Dimension Reduction Method for Solving Linear Matrix Equations , 2016, ICCS.

[40]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[41]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[42]  Gregory A. Newman,et al.  Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain , 2014 .

[43]  René-Édouard Plessix,et al.  Modified surface boundary conditions for elastic waveform inversion of low-frequency wide-angle active land seismic data , 2015 .

[44]  Lexing Ying,et al.  Sweeping preconditioners for elastic wave propagation with spectral element methods , 2014 .

[45]  Martin B. van Gijzen,et al.  Nested Krylov Methods for Shifted Linear Systems , 2014, SIAM J. Sci. Comput..

[46]  Jean-Yves L'Excellent,et al.  Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..

[47]  Justin K. Rice Efficient Algorithms for Distributed Control: A Structured Matrix Approach , 2010 .