Delay-Coordinate Maps and the Spectra of Koopman Operators

The Koopman operator induced by a dynamical system is inherently linear and provides an alternate method of studying many properties of the system, including attractor reconstruction and forecasting. Koopman eigenfunctions represent the non-mixing component of the dynamics. They factor the dynamics, which can be chaotic, into quasiperiodic rotations on tori. Here, we describe a method through which these eigenfunctions can be obtained from a kernel integral operator, which also annihilates the continuous spectrum. We show that incorporating a large number of delay coordinates in constructing the kernel of that operator results, in the limit of infinitely many delays, in the creation of a map into the point spectrum subspace of the Koopman operator. This enables efficient approximation of Koopman eigenfunctions in systems with pure point or mixed spectra. We illustrate our results with applications to product dynamical systems with mixed spectra.

[1]  T. Sauer,et al.  Local Kernels and the Geometric Structure of Data , 2014, 1407.1426.

[2]  W. Petryshyn On the eigenvalue problem Tu-λSu=0 with unbounded and nonsymetric operators T and S , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  Dimitrios Giannakis,et al.  Extraction and prediction of coherent patterns in incompressible flows through space–time Koopman analysis , 2017, 1706.06450.

[4]  Mikhail Belkin,et al.  Convergence of Laplacian Eigenmaps , 2006, NIPS.

[5]  T. Eisner,et al.  Ergodic Theorems , 2019, Probability.

[6]  Lai-Sang Young,et al.  What Are SRB Measures, and Which Dynamical Systems Have Them? , 2002 .

[7]  Mark J. McGuinness,et al.  The fractal dimension of the Lorenz attractor , 1983 .

[8]  Dejan Slepcev,et al.  A variational approach to the consistency of spectral clustering , 2015, Applied and Computational Harmonic Analysis.

[9]  V. A. Menegatto,et al.  Eigenvalues of Integral Operators Defined by Smooth Positive Definite Kernels , 2009 .

[10]  Victor Montagud-Camps Turbulence , 2019, Turbulent Heating and Anisotropy in the Solar Wind.

[11]  D. Giannakis,et al.  Nonparametric forecasting of low-dimensional dynamical systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry: THE BOUNDARY LAYER , 1996, The Aeronautical Journal (1968).

[13]  Steven L. Brunton,et al.  Chaos as an intermittently forced linear system , 2016, Nature Communications.

[14]  T. Eisner,et al.  Operator Theoretic Aspects of Ergodic Theory , 2015 .

[15]  D. Giannakis Data-driven spectral decomposition and forecasting of ergodic dynamical systems , 2015, Applied and Computational Harmonic Analysis.

[16]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[17]  M. Stone On One-Parameter Unitary Groups in Hilbert Space , 1932 .

[18]  V. A. Menegatto,et al.  Eigenvalue decay rates for positive integral operators , 2013 .

[19]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[20]  Igor Mezic,et al.  On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator , 2017, J. Nonlinear Sci..

[21]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[22]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[23]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[24]  Dimitrios Giannakis,et al.  Dynamics-Adapted Cone Kernels , 2014, SIAM J. Appl. Dyn. Syst..

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[27]  Alain Largillier,et al.  Spectral Computations for Bounded Operators , 2001 .

[28]  Mikhail Belkin,et al.  Consistency of spectral clustering , 2008, 0804.0678.

[29]  Morten Hjorth-Jensen Eigenvalue Problems , 2021, Explorations in Numerical Analysis.

[30]  Michael Dellnitz,et al.  On the isolated spectrum of the Perron-Frobenius operator , 2000 .

[31]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[32]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Ian Melbourne,et al.  The Lorenz Attractor is Mixing , 2005 .

[34]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[35]  Milan Korda,et al.  Data-driven spectral analysis of the Koopman operator , 2017, Applied and Computational Harmonic Analysis.

[36]  Zhizhen Zhao,et al.  Spatiotemporal Feature Extraction with Data-Driven Koopman Operators , 2015, FE@NIPS.

[37]  Andrew J. Majda,et al.  Time Series Reconstruction via Machine Learning: Revealing Decadal Variability and Intermittency in the North Pacific Sector of a Coupled Climate Model. , 2011, CIDU 2011.

[38]  Tyrus Berry,et al.  Consistent manifold representation for topological data analysis , 2016, Foundations of Data Science.

[39]  W. Tucker The Lorenz attractor exists , 1999 .

[40]  C. Caramanis What is ergodic theory , 1963 .

[41]  P. Halmos Lectures on ergodic theory , 1956 .

[42]  A. Majda,et al.  Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability , 2012, Proceedings of the National Academy of Sciences.

[43]  R. Vautard,et al.  Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series , 1989 .

[44]  D. Giannakis,et al.  Koopman spectra in reproducing kernel Hilbert spaces , 2018, 1801.07799.

[45]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[46]  Timothy D. Sauer,et al.  Time-Scale Separation from Diffusion-Mapped Delay Coordinates , 2013, SIAM J. Appl. Dyn. Syst..

[47]  O. Junge,et al.  On the Approximation of Complicated Dynamical Behavior , 1999 .

[48]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[49]  J. Harlim,et al.  Variable Bandwidth Diffusion Kernels , 2014, 1406.5064.

[50]  B. Fayad Analytic mixing reparametrizations of irrational flows , 2002, Ergodic Theory and Dynamical Systems.

[51]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[52]  P. Constantin,et al.  Diffusion and mixing in fluid flow , 2005 .

[53]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[54]  G. Froyland,et al.  Almost-invariant sets and invariant manifolds — Connecting probabilistic and geometric descriptions of coherent structures in flows , 2009 .

[55]  Igor Mezic,et al.  Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator , 2016, SIAM J. Appl. Dyn. Syst..

[56]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[57]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[58]  Evarist Giné,et al.  Empirical Processes , 2011, International Encyclopedia of Statistical Science.

[59]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[60]  Clara Deser,et al.  El Niño and Southern Oscillation (ENSO): A Review , 2017 .

[61]  Zeng Lian,et al.  SRB Measures for A Class of Partially Hyperbolic Attractors in Hilbert spaces , 2015, 1508.03301.

[62]  Nadine Aubry,et al.  Spatiotemporal analysis of complex signals: Theory and applications , 1991 .

[63]  Marc G. Genton,et al.  Classes of Kernels for Machine Learning: A Statistics Perspective , 2002, J. Mach. Learn. Res..

[64]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[65]  Ronald R. Coifman,et al.  Graph Laplacian Tomography From Unknown Random Projections , 2008, IEEE Transactions on Image Processing.

[66]  Lai-Sang Young,et al.  Strange Attractors for Periodically Forced Parabolic Equations , 2013 .

[67]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[68]  Gary Froyland,et al.  A Computational Method to Extract Macroscopic Variables and Their Dynamics in Multiscale Systems , 2013, SIAM J. Appl. Dyn. Syst..

[69]  Dimitrios Giannakis,et al.  Indo-Pacific variability on seasonal to multidecadal timescales. Part I: Intrinsic SST modes in models and observations , 2016, 1604.01742.

[70]  Gary Froyland,et al.  Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools , 2014 .

[71]  Jihui Zhang,et al.  Infinitely many small solutions for the p(x)-Laplacian operator with nonlinear boundary conditions , 2013 .

[72]  A. Stuart,et al.  Analysis of the 3DVAR filter for the partially observed Lorenz'63 model , 2012, 1212.4923.