Limitations of Incremental Dynamic Programs

We consider so-called “incremental” dynamic programming algorithms, and are interested in the number of subproblems produced by them. The standard dynamic programming algorithm for the n-dimensional Knapsack problem is incremental, produces nK subproblems and nK relations (wires) between the subproblems, where K is the capacity of the knapsack. We show that any incremental algorithm for this problem must produce about nK subproblems, and that about nK log K wires (relations between subproblems) are necessary.

[1]  M. Held,et al.  Finite-State Processes and Dynamic Programming , 1967 .

[2]  Gerhard J. Woeginger,et al.  When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)? , 2000, INFORMS J. Comput..

[3]  Rajeev Motwani,et al.  On syntactic versus computational views of approximability , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[4]  Stasys Jukna,et al.  A Note on Read-k Times Branching Programs , 1994, RAIRO Theor. Informatics Appl..

[5]  Georg Schnitger,et al.  Yet harder knapsack problems , 2011, Theor. Comput. Sci..

[6]  M. Hung,et al.  A hard knapsack problem , 1988 .

[7]  P. Helman,et al.  A Comprehensive Model of Dynamic Programming , 1985 .

[8]  Miklós Ajtai,et al.  Determinism versus Nondeterminism for Linear Time RAMs with Memory Restrictions , 2002, J. Comput. Syst. Sci..

[9]  Allan Borodin,et al.  On lower bounds for read-k-times branching programs , 2005, computational complexity.

[10]  Oded Regev Priority algorithms for makespan minimization in the subset model , 2002, Inf. Process. Lett..

[11]  Allan Borodin,et al.  Toward a Model for Backtracking and Dynamic Programming , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[12]  Bernhard Korte,et al.  Exponential Lower Bounds on a Class of Knapsack Algorithms , 1981, Math. Oper. Res..

[13]  Allan Borodin,et al.  Priority algorithms for graph optimization problems , 2004, Theor. Comput. Sci..

[14]  Russell Impagliazzo,et al.  Models of Greedy Algorithms for Graph Problems , 2004, SODA '04.

[15]  Paul Helman,et al.  A common schema for dynamic programming and branch and bound algorithms , 1989, JACM.

[16]  Allan Borodin,et al.  The Power of Priority Algorithms for Facility Location and Set Cover , 2004, Algorithmica.

[17]  Bernhard Korte,et al.  Lower bounds on the worst-case complexity of some oracle algorithms , 1978, Discret. Math..

[18]  Stasys Jukna A nondeterministic space-time tradeoff for linear codes , 2009, Inf. Process. Lett..

[19]  Arnon Rosenthal Dynamic Programming is Optimal for Nonserial Optimization Problems , 1982, SIAM J. Comput..

[20]  R. Bellman COMBINATORIAL PROCESSES AND DYNAMIC PROGRAMMING , 1958 .

[21]  Stasys Jukna The Effect of Null-Chains on the Complexity of Contact Schemes , 1989, FCT.

[22]  Andrew Lyons Exact Complexity Results and Polynomial-Time Algorithms for Derivative Accumulation , 2010 .

[23]  Russell Impagliazzo,et al.  A Stronger Model of Dynamic Programming Algorithms , 2009, Algorithmica.

[24]  David Pisinger,et al.  Where are the hard knapsack problems? , 2005, Comput. Oper. Res..

[25]  Béla Bollobás,et al.  Proving Integrality Gaps without Knowing the Linear Program , 2006, Theory Comput..

[26]  Michael E. Saks,et al.  Time-space trade-off lower bounds for randomized computation of decision problems , 2003, JACM.

[27]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[28]  L. R. Kerr The Effect of Algebraic Structure on the Computational Complexity of Matrix Multiplication , 1970 .

[29]  Agustín Bompadre,et al.  Exponential Lower Bounds on the Complexity of a Class of Dynamic Programs for Combinatorial Optimization Problems , 2012, Algorithmica.

[30]  Alexander A. Razborov,et al.  Neither Reading Few Bits Twice Nor Reading Illegally Helps Much , 1998, Discret. Appl. Math..

[31]  E. Balas,et al.  New classes of efficiently solvable generalized Traveling Salesman Problems , 1999, Ann. Oper. Res..