Manipulating Ga growth profile enables all-flexible high-performance single-junction CIGS and 4T perovskite/CIGS tandem solar cells

[1]  Junbo Gong,et al.  Mixed Solvents Assisted Post‐Treatment Enables High‐Efficiency Single‐Junction Perovskite and 4T Perovskite/CIGS Tandem Solar Cells , 2022, Advancement of science.

[2]  A. Jen,et al.  Interfacial Engineering of Wide‐Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells , 2021, Advanced Functional Materials.

[3]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[4]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[5]  Shasha Lv,et al.  Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells , 2021 .

[6]  Jianmin Li,et al.  Rubidium Fluoride Assisted High-efficiency Cu2(Zn,Cd)SnS4 Solar Cells by Co-evaporation/annealing Method , 2021, Journal of Materials Chemistry A.

[7]  Xingzhong Zhao,et al.  Flexible semitransparent perovskite solar cells with gradient energy levels enable efficient tandems with Cu(In,Ga)Se2 , 2020 .

[8]  Hui Li,et al.  Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. , 2020, Chemical reviews.

[9]  Kai Chen,et al.  Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17% , 2020 .

[10]  M. Zeman,et al.  Interdigitated back‐contacted structure: A different approach towards high‐efficiency ultrathin copper indium gallium (di)selenide solar cells , 2020, Progress in Photovoltaics: Research and Applications.

[11]  Xing’ao Li,et al.  Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells , 2020, Nano-Micro Letters.

[12]  Zhiming M. Wang,et al.  Highly efficient and stable spray assisted nanostructured Cu2S/Carbon paper counter electrode for quantum dots sensitized solar cells , 2019, Journal of Power Sources.

[13]  D. Flandre,et al.  Light management design in ultra-thin chalcopyrite photovoltaic devices by employing optical modelling , 2019, Solar Energy Materials and Solar Cells.

[14]  Motoshi Nakamura,et al.  Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35% , 2019, IEEE Journal of Photovoltaics.

[15]  J. Jeong,et al.  Thin Ag Precursor Layer-Assisted Co-Evaporation Process for Low Temperature Growth of Cu(In,Ga)Se2 Thin Film. , 2019, ACS applied materials & interfaces.

[16]  A. Tiwari,et al.  Efficiency Improvement of Near‐Stoichiometric CuInSe2 Solar Cells for Application in Tandem Devices , 2019, Advanced Energy Materials.

[17]  M. Jubault,et al.  Structural characterization of coevaporated Cu(In,Ga)Se2 absorbers deposited at low temperature , 2019, Journal of Alloys and Compounds.

[18]  S. Nishiwaki,et al.  Advanced Alkali Treatments for High‐Efficiency Cu(In,Ga)Se2 Solar Cells on Flexible Substrates , 2019, Advanced Energy Materials.

[19]  J. Hou,et al.  Effects of substrate orientation and solution movement in chemical bath deposition on Zn(O,S) buffer layer and Cu(In,Ga)Se2 thin film solar cells , 2019, Nano Energy.

[20]  O. Isabella,et al.  Optical optimization of a multi-layer wideband anti-reflection coating using porous MgF2 for sub-micron-thick CIGS solar cells , 2019, Solar Energy.

[21]  G. Brammertz,et al.  A study to improve light confinement and rear-surface passivation in a thin-Cu(In, Ga)Se2 solar cell , 2019, Thin Solid Films.

[22]  Xiaomin Wang,et al.  Effects of Ammonia-Induced Surface Modification of Cu(In,Ga)Se2 on High-Efficiency Zn(O,S)-Based Cu(In,Ga)Se2 Solar Cells , 2019, Solar RRL.

[23]  J. Yun,et al.  Effect of Crystal Orientation and Conduction Band Grading of Absorber on Efficiency of Cu(In,Ga)Se2 Solar Cells Grown on Flexible Polyimide Foil at Low Temperature , 2018, Advanced Energy Materials.

[24]  Qifeng Zhang,et al.  Progress in perovskite solar cells based on ZnO nanostructures , 2018 .

[25]  T. Minemoto,et al.  Heterointerface recombination of Cu(In,Ga)(S,Se)2‐based solar cells with different buffer layers , 2018 .

[26]  Jun Luo,et al.  Mechanism and effect of γ-butyrolactone solvent vapor post-annealing on the performance of a mesoporous perovskite solar cell , 2018, RSC advances.

[27]  D. Flandre,et al.  Addressing the impact of rear surface passivation mechanisms on ultra-thin Cu(In,Ga)Se2 solar cell performances using SCAPS 1-D model , 2017 .

[28]  Wei Li,et al.  Review on Alkali Element Doping in Cu(In,Ga)Se 2 Thin Films and Solar Cells , 2017 .

[29]  Thomas Feurer,et al.  Progress in thin film CIGS photovoltaics – Research and development, manufacturing, and applications , 2017 .

[30]  D. Hariskos,et al.  High-efficiency Cu(In,Ga)Se 2 solar cells , 2017 .

[31]  T. Kato Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status , 2017 .

[32]  Philip Jackson,et al.  Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% , 2016 .

[33]  S. Rühle Tabulated values of the Shockley–Queisser limit for single junction solar cells , 2016 .

[34]  Sang Lee,et al.  Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells , 2015 .

[35]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[36]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[37]  Shiro Nishiwaki,et al.  Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. , 2011, Nature materials.

[38]  W. Shafarman,et al.  Structural characterization of the (AgCu)(InGa)Se2 thin film alloy system for solar cells , 2011 .

[39]  B. To,et al.  Processing and Properties of Sub-Micron CIGS Solar Cells , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[40]  A. Rockett,et al.  Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells , 2003 .

[41]  M. Bodegård,et al.  Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance , 2003 .

[42]  W. Shafarman,et al.  Effect of substrate temperature and depostion profile on evaporated Cu(InGa)Se2 films and devices , 2000 .

[43]  Su-Huai Wei,et al.  Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys , 1995 .

[44]  H. Schock,et al.  Crystal growth and diffusion in Cu(In, Ga)Se2 chalcopyrite thin films , 1993 .