New Insights into the Mechanism of Visible Light Photocatalysis.

In recent years, the area of developing visible-light-active photocatalysts based on titanium dioxide has been enormously investigated due to its wide range of applications in energy and environment related fields. Various strategies have been designed to efficiently utilize the solar radiation and to enhance the efficiency of photocatalytic processes. Building on the fundamental strategies to improve the visible light activity of TiO2-based photocatalysts, this Perspective aims to give an insight into many contemporary developments in the field of visible-light-active photocatalysis. Various examples of advanced TiO2 composites have been discussed in relation to their visible light induced photoconversion efficiency, dynamics of electron-hole separation, and decomposition of organic and inorganic pollutants, which suggest the critical need for further development of these types of materials for energy conversion and environmental remediation purposes.

[1]  Xin Zhou,et al.  Trends in non-metal doping of the SrTiO₃ surface: a hybrid density functional study. , 2015, Physical chemistry chemical physics : PCCP.

[2]  S. Pillai,et al.  Evaluating the Mechanism of Visible Light Activity for N,F-TiO2 Using Photoelectrochemistry , 2014 .

[3]  S. Pillai,et al.  Solar photocatalysis for water disinfection: Materials and reactor design , 2014 .

[4]  E. Favvas,et al.  Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO2/CNT composites , 2014 .

[5]  Li Wang,et al.  Synergetic promotion on photoactivity and stability of W18O49/TiO2 hybrid , 2014 .

[6]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[7]  G. Romanos,et al.  Visible light active TiO2 photocatalytic filtration membranes with improved permeability and low energy consumption , 2014 .

[8]  S. Pillai,et al.  UV and visible light activated TiO2 photocatalysis of 6-hydroxymethyl uracil, a model compound for the potent cyanotoxin cylindrospermopsin , 2014 .

[9]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[10]  W. Qin,et al.  Enhanced near-infrared photocatalysis of NaYF4:Yb, Tm/CdS/TiO2 composites. , 2014, Dalton transactions.

[11]  Dong Ha Kim,et al.  Plasmonic dye-sensitized solar cells incorporated with Au-TiO₂ nanostructures with tailored configurations. , 2014, Nanoscale.

[12]  P. Smirniotis,et al.  Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2 , 2014 .

[13]  Chih-Hung Tsai,et al.  Porphyrins for efficient dye-sensitized solar cells covering the near-IR region , 2014 .

[14]  Y. Liu,et al.  Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@SiO2@TiO2 hierarchical nanostructures: Fabrication and enhanced photocatalytic properties , 2013 .

[15]  Chongyin Yang,et al.  Core-shell nanostructured "black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. , 2013, Journal of the American Chemical Society.

[16]  Ying Dai,et al.  Insights into the Role of Surface Distortion in Promoting the Separation and Transfer of Photogenerated Carriers in Anatase TiO2 , 2013 .

[17]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[18]  R. Luque,et al.  Microcystin-LR removal from aqueous solutions using a magnetically separable N-doped TiO2 nanocomposite under visible light irradiation. , 2013, Chemical communications.

[19]  Chi-Young Lee,et al.  The “cascade effect” of nano/micro hierarchical structure: A new concept for designing the high photoactivity materials – An example for TiO2 , 2013 .

[20]  Chongyin Yang,et al.  Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. , 2013, Chemistry.

[21]  Yasuhiro Shiraishi,et al.  Pt-Cu bimetallic alloy nanoparticles supported on anatase TiO2: highly active catalysts for aerobic oxidation driven by visible light. , 2013, ACS nano.

[22]  R. Ahuja,et al.  Cationic-anionic mediated charge compensation on La2Ti2O7 for visible light photocatalysis. , 2013, Physical chemistry chemical physics : PCCP.

[23]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[24]  Yi‐Jun Xu,et al.  Defect-Mediated Growth of Noble-Metal (Ag, Pt, and Pd) Nanoparticles on TiO2 with Oxygen Vacancies for Photocatalytic Redox Reactions under Visible Light , 2013 .

[25]  T. Maggos,et al.  Photocatalytic oxidation of nitrogen oxides on N-F-doped titania thin films , 2013 .

[26]  Dionysios D. Dionysiou,et al.  Enhanced visible light photocatalytic activity of CN-codoped TiO2 films for the degradation of microcystin-LR , 2013 .

[27]  Tsunehiro Tanaka,et al.  Bifunctionality of Rh3+ Modifier on TiO2 and Working Mechanism of Rh3+/TiO2 Photocatalyst under Irradiation of Visible Light , 2013 .

[28]  W. Daoud,et al.  Photostable self-cleaning cotton by a copper(II) porphyrin/TiO2 visible-light photocatalytic system. , 2013, ACS applied materials & interfaces.

[29]  Yuan Wang,et al.  Ag/TiO2 nanofiber heterostructures: Highly enhanced photocatalysts under visible light , 2013 .

[30]  G. Pacchioni,et al.  Trends in non-metal doping of anatase TiO2: B, C, N and F , 2013 .

[31]  G. Romanos,et al.  Hybrid Ultrafiltration/Photocatalytic Membranes for Efficient Water Treatment , 2013 .

[32]  Xiangfeng Duan,et al.  Progress, challenge and perspective of heterogeneous photocatalysts. , 2013, Chemical Society reviews.

[33]  P. Kamat Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. , 2013, The journal of physical chemistry letters.

[34]  R. Ahuja,et al.  Layered Perovskite Sr2Ta2O7 for Visible Light Photocatalysis: A First Principles Study , 2013 .

[35]  Elena Selli,et al.  Doping TiO2 with p-block elements: Effects on photocatalytic activity , 2013 .

[36]  D. Dionysiou,et al.  Anion-Doped TiO2 Nanocatalysts for Water Purification under Visible Light , 2013 .

[37]  M. Seery,et al.  A highly efficient TiO(2-x)C(x) nano-heterojunction photocatalyst for visible light induced antibacterial applications. , 2013, ACS applied materials & interfaces.

[38]  Dionysios D. Dionysiou,et al.  Inorganic-organic core-shell titania nanoparticles for efficient visible light activated photocatalysis , 2013 .

[39]  S. Pillai,et al.  Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination , 2013 .

[40]  Fang‐Xing Xiao Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. , 2012, ACS applied materials & interfaces.

[41]  T. He,et al.  Band-engineered SrTiO3 nanowires for visible light photocatalysis , 2012 .

[42]  S. G. Kumar,et al.  Exploring the critical dependence of adsorption of various dyes on the degradation rate using Ln3+-TiO2 surface under UV/solar light , 2012 .

[43]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[44]  Xiaofeng Duan,et al.  Series of transition metal-doped TiO2 transparent aqueous sols with visible-light response , 2012 .

[45]  José L. Figueiredo,et al.  Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye , 2012 .

[46]  D. Dionysiou,et al.  A comparative study on the removal of cylindrospermopsin and microcystins from water with NF-TiO2-P25 composite films with visible and UV–vis light photocatalytic activity , 2012 .

[47]  M. Seery,et al.  Nanostructured Ti(1-x)S(x)O(2-y)N(y) heterojunctions for efficient visible-light-induced photocatalysis. , 2012, Inorganic chemistry.

[48]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[49]  P. Kamat,et al.  Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. , 2012, ACS nano.

[50]  M. Seery,et al.  Effect of N-doping on the photocatalytic activity of sol-gel TiO2. , 2012, Journal of hazardous materials.

[51]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[52]  E. Aydil,et al.  TiO2-B/anatase core-shell heterojunction nanowires for photocatalysis. , 2011, ACS applied materials & interfaces.

[53]  M. Seery,et al.  Oxygen Rich Titania: A Dopant Free, High Temperature Stable, and Visible‐Light Active Anatase Photocatalyst , 2011 .

[54]  Dionysios D. Dionysiou,et al.  Innovative visible light-activated sulfur doped TiO2 films for water treatment , 2011 .

[55]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[56]  Zhongbiao Wu,et al.  Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2 Nanomaterials Prepared by a Green Synthetic Approach , 2011 .

[57]  Jing Cao,et al.  Preparation, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2 , 2011 .

[58]  Guodong Li,et al.  Differences between Zn-porphyrin-coupled titanate nanotubes with various anchoring modes: Thermostability, spectroscopic, photocatalytic and photoelectronic properties , 2011 .

[59]  D. M. Lee,et al.  A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state. , 2011, ACS nano.

[60]  Lianzhou Wang,et al.  Nitrogen doped Sr₂Ta₂O₇ coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. , 2011, ACS nano.

[61]  N. Vaenas,et al.  Visible light induced wetting of nanostructured N-F co-doped titania films , 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[62]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[63]  Dionysios D. Dionysiou,et al.  Synthesis, structural characterization and evaluation of sol-gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR , 2010 .

[64]  M. Seery,et al.  A Systematic Study of the Effect of Silver on the Chelation of Formic Acid to a Titanium Precursor and the Resulting Effect on the Anatase to Rutile Transformation of TiO2 , 2010 .

[65]  Michael K. Seery,et al.  Highly Visible Light Active TiO2-xNx Heterojunction Photocatalysts , 2010 .

[66]  Dan Zhao,et al.  Near-infrared photocatalysis based on YF3 : Yb3+,Tm3+/TiO2 core/shell nanoparticles. , 2010, Chemical communications.

[67]  Cesar Pulgarin,et al.  Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. , 2010 .

[68]  G. Pacchioni,et al.  The nitrogen photoactive centre in N-doped titanium dioxide formed via interaction of N atoms with the solid. Nature and energy level of the species , 2009 .

[69]  Elias Stathatos,et al.  Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water ☆ , 2009 .

[70]  L. Forró,et al.  Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light , 2009 .

[71]  S. Pillai,et al.  One-Pot Synthesis of Anionic (Nitrogen) and Cationic (Sulfur) Codoped High-Temperature Stable, Visible Light Active, Anatase Photocatalysts , 2009 .

[72]  Di Zhang,et al.  Enhanced Light‐Harvesting and Photocatalytic Properties in Morph‐TiO2 from Green‐Leaf Biotemplates , 2009 .

[73]  Jingjing Xu,et al.  A simple route for the preparation of Eu, N-codoped TiO2 nanoparticles with enhanced visible light-induced photocatalytic activity. , 2008, Journal of colloid and interface science.

[74]  Chuncheng Chen,et al.  Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO. , 2008, Angewandte Chemie.

[75]  Chenghua Sun,et al.  Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. , 2008, Angewandte Chemie.

[76]  S. Pillai,et al.  Improved High-Temperature Stability and Sun-Light-Driven Photocatalytic Activity of Sulfur-Doped Anatase TiO2 , 2008 .

[77]  W. Ho,et al.  Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[78]  Kangnian Fan,et al.  Simple fabrication of twist-like helix N,S-codoped titania photocatalyst with visible-light response , 2008 .

[79]  Carsten Rockstuhl,et al.  A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. , 2008, Journal of the American Chemical Society.

[80]  A. Furube,et al.  Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[81]  G. Pacchioni,et al.  N-doped TiO2: Theory and experiment , 2007 .

[82]  P. Falaras,et al.  Photocatalytic properties of screen-printed titania , 2007 .

[83]  Michael K. Seery,et al.  Silver Doped Titanium Dioxide Nanomaterials for Enhanced Visible Light Photocatalysis , 2007 .

[84]  V. K. Mahajan,et al.  Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode , 2007 .

[85]  Gang Chen,et al.  Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3 , 2006 .

[86]  Nick Serpone,et al.  Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? , 2006, The journal of physical chemistry. B.

[87]  Tomoki Akita,et al.  All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system , 2006, Nature materials.

[88]  Chuncheng Chen,et al.  Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation , 2005 .

[89]  Jinhua Ye,et al.  Photocatalytic oxidation of 2-propanol in the gas phase over cesium bismuth niobates under visible light irradiation , 2005 .

[90]  Annabella Selloni,et al.  Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. , 2005, The journal of physical chemistry. B.

[91]  K. Asai,et al.  Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light , 2004 .

[92]  Chuncheng Chen,et al.  Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation. , 2004, Journal of the American Chemical Society.

[93]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[94]  James L. Gole,et al.  Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale , 2004 .

[95]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[96]  K. Hashimoto,et al.  Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst , 2003 .

[97]  S. Neophytides,et al.  Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange , 2003 .

[98]  K. Asai,et al.  Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2 , 2003 .

[99]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[100]  G. Marcì,et al.  Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2 , 2002 .

[101]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[102]  C. H. Lee,et al.  Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. , 2001, Environmental science & technology.

[103]  P. Kamat,et al.  Semiconductor−Metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2 (TiO2/Gold) Nanoparticles , 2001 .

[104]  P. Kamat,et al.  Improving the Photoelectrochemical Performance of Nanostructured TiO2 Films by Adsorption of Gold Nanoparticles , 2000 .

[105]  Polycarpos Falaras,et al.  Synergetic effect of carboxylic acid functional groups and fractal surface characteristics for efficient dye sensitization of titanium oxide , 1998 .

[106]  Nick Serpone,et al.  Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO2 Colloids: Naked and with the Lattice Doped with Cr3+, Fe3+, and V5+ Cations , 1994 .

[107]  Shinri Sato,et al.  Photocatalytic activity of NOx-doped TiO2 in the visible light region , 1986 .

[108]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.