Focusing of millijoule picosecond Kα radiation from 100 TW laser-solid interaction

A calibrated x-ray spectrometer was used to characterize an intense 4.5 keV Kα source. Generated from the interaction of 30 J-320 fs laser pulses focused on 25 μm thick Ti foils, the conversion efficiency into Ti Kα line is estimated to (9±6)×10−5. Highly efficient collection, monochromatization and focusing were achieved using an ellipsoidally bent highly oriented pyrolytic graphite crystal. The measured 700 μm full width half maximum (FWHM) focal spot leads to a fluence of (3.0±2.1) mJ/cm2 hence paving the way to the study of intense x-ray pulse interaction with matter as demonstrated by a first simple experiment.

[1]  Wolfgang Sandner,et al.  Hard x-ray emission from intense short pulse laser plasmas , 1995 .

[2]  G Svahn,et al.  Generation of x rays for medical imaging by high-power lasers: preliminary results. , 1993, Radiology.

[3]  E. Fill,et al.  Spatial characteristics of Kα radiation from weakly relativistic laser plasmas , 2000 .

[4]  Patrick Audebert,et al.  Femtosecond time-resolved X-ray diffraction from laser-heated organic films , 1997, Nature.

[5]  S. G. Gales,et al.  Image plates as x-ray detectors in plasma physics experiments , 2004 .

[6]  S. Kennedy,et al.  Doubly curved crystal point-focusing x-ray monochromators: geometrical and practical optics. , 1977, Applied optics.

[7]  I. Uschmann,et al.  Monochromatic focusing of subpicosecond x-ray pulses in the keV range , 1999 .

[8]  Ingo Uschmann,et al.  X-ray microscopy of laser-produced plasmas with the use of bent crystals , 1991 .

[9]  Gauthier,et al.  Efficient K alpha x-ray source from femtosecond laser-produced plasmas. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Forster,et al.  Yield optimization and time structure of femtosecond laser plasma kalpha sources , 2000, Physical review letters.

[11]  A. Krol,et al.  Future of laser-based X-ray sources for medical imaging , 2002 .

[12]  Liubov Samoylova,et al.  Damage study for the design of the European XFEL beamline optics , 2009, Optics + Optoelectronics.

[13]  Y. Tomioka,et al.  An X-ray-induced insulator–metal transition in a magnetoresistive manganite , 1997, Nature.

[14]  Kent R. Wilson,et al.  Transient x‐ray scattering calculated from molecular dynamics , 1986 .

[15]  A. Król,et al.  Kα x-ray emission characterization of 100 Hz, 15 mJ femtosecond laser system with high contrast ratio , 2009, Applied physics. B, Lasers and optics.

[16]  Hidekazu Mimura,et al.  Requirements on hard x-ray grazing incidence optics for European XFEL: analysis and simulation of wavefront transformations , 2009, Optics + Optoelectronics.

[17]  Julien Fuchs,et al.  Laser acceleration of high-energy protons in variable density plasmas , 2009 .

[18]  H Schwoerer,et al.  Spatial characteristics of Kalpha x-ray emission from relativistic femtosecond laser plasmas. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  M. Rosen,et al.  Ultrafast X-ray Pulses from Laser-Produced Plasmas , 1991, Science.

[20]  Peter V. Nickles,et al.  Characteristics of hard x‐ray emission from subpicosecond laser‐produced plasmas , 1996 .

[21]  Jeffrey A. Koch,et al.  High-energy Kα radiography using high-intensity, short-pulse lasersa) , 2006 .

[22]  J. Chalupský,et al.  Damage of amorphous carbon induced by soft x-ray femtosecond pulses above and below the critical angle , 2009 .

[23]  D. Ryutov,et al.  Thermal stresses in the reflective x-ray optics for the Linac Coherent Light Source , 2003 .

[24]  Peter A. Norreys,et al.  Characterization of a picosecond laser generated 4.5 keV Ti K-alpha source for pulsed radiography , 2005 .

[25]  Gerard Mourou,et al.  Study of hard x-ray emission from intense femtosecond Ti:sapphire laser–solid target interactions , 2004 .

[26]  Jean-Claude Kieffer,et al.  Hard x-ray emission in high intensity femtosecond laser–target interaction , 1999 .

[27]  A. Gebhardt,et al.  High efficiency, high quality x-ray optic based on ellipsoidally bent highly oriented pyrolytic graphite crystal for ultrafast x-ray diffraction experiments. , 2005, Applied Optics.

[28]  W. Kruer,et al.  The Physics of Laser Plasma Interactions , 2019 .