Independent DEM of Antarctica Using GNSS‐R Data From TechDemoSat‐1

The first digital elevation model (DEM) of the Antarctic ice sheet derived from Global Navigation Satellite Systems-Reflectometry (GNSS-R) data from the UK TechDemoSat-1 satellite is presented. This is obtained using 32 months of data from the mission. This opportunistic and inexpensive method is shown to produce encouraging results from the technology demonstration platform of TechDemoSat-1, with median bias under 18 m and root-mean-square difference under 91 m when compared to the CryoSat-2 1-km DEM v1.0. Discrepancies between the two data sets are explored along with possible causes of such differences and potential improvements to further optimize this technique for future GNSS-R missions.

[1]  Philip Jales,et al.  Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat‐1 mission , 2015 .

[2]  Umar Iqbal Bhatti,et al.  Remote sensing of ocean, ice and land surfaces using bistatically reflected GNSS signals from low Earth orbit , 2015, 2015 Fourth International Conference on Aerospace Science and Engineering (ICASE).

[3]  W. Krabill,et al.  Penetration depth of interferometric synthetic‐aperture radar signals in snow and ice , 2001, Geophysical Research Letters.

[4]  C. Zuffada,et al.  First spaceborne observation of sea surface height using GPS‐Reflectometry , 2016 .

[5]  Adriano Camps,et al.  Sea Ice Detection Using U.K. TDS-1 GNSS-R Data , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[6]  G. Ruffini,et al.  The Eddy Experiment: Accurate GNSS‐R ocean altimetry from low altitude aircraft , 2004, physics/0406025.

[7]  Maorong Ge,et al.  A zeppelin experiment to study airborne altimetry using specular Global Navigation Satellite System reflections , 2013 .

[8]  Estel Cardellach,et al.  Carrier phase delay altimetry with GPS‐reflection/occultation interferometry from low Earth orbiters , 2004 .

[9]  Penina Axelrad,et al.  Bistatic Scattering of GPS Signals Off Arctic Sea Ice , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Christopher Ruf,et al.  Wind Speed Retrieval Algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) Mission , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Cinzia Zuffada,et al.  Theoretical description of a bistatic system for ocean altimetry using the GPS signal , 2003 .

[12]  Valery U. Zavorotny,et al.  Bistatic Radar Equation for Signals of Opportunity Revisited , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[13]  William J. Emery,et al.  GPS signal scattering from land for moisture content determination , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[14]  Tommaso Parrinello,et al.  A new digital elevation model of Antarctica derived from CryoSat-2 altimetry , 2017 .

[15]  Jonathan L. Bamber,et al.  A new 1 km digital elevation model of Antarctica derived from combined radar and laser data – Part 2: Validation and error estimates , 2008 .

[16]  M. Martín-Neira A pasive reflectometry and interferometry system (PARIS) application to ocean altimetry , 1993 .

[17]  Jonathan L. Bamber,et al.  A new 1 km Digital Elevation Model of the Antarctic Derived From Combined Satellite Radar and Laser Data , 2008 .

[18]  Weimin Huang,et al.  Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results From the U.K. TechDemoSat-1 Mission , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[19]  Philip Jales,et al.  An Assessment of Non-geophysical Effects in Spaceborne GNSS Reflectometry Data From the UK TechDemoSat-1 Mission , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[20]  Christopher Ruf,et al.  Calibration and Unwrapping of the Normalized Scattering Cross Section for the Cyclone Global Navigation Satellite System , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[21]  T. Stein International Geoscience And Remote Sensing Symposium , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[22]  C. Zuffada,et al.  5‐cm‐Precision aircraft ocean altimetry using GPS reflections , 2002 .

[23]  Manuel Martín-Neira,et al.  Consolidating the Precision of Interferometric GNSS-R Ocean Altimetry Using Airborne Experimental Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Chris Rizos,et al.  Single-Pass Sub-Meter Space-Based GNSS-R Ice Altimetry: Results From TDS-1 , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[25]  Marco Brogioni,et al.  Analyzing and modeling the SMOS spatial variations in the East Antarctic Plateau , 2016 .

[26]  M. Unwin,et al.  CYGNSS: Enabling the Future of Hurricane Prediction [Remote Sensing Satellites] , 2013, IEEE Geoscience and Remote Sensing Magazine.

[27]  Weiqiang Li,et al.  Feasibility of GNSS-R Ice Sheet Altimetry in Greenland Using TDS-1 , 2017, Remote. Sens..

[28]  S. Gleason,et al.  Remote sensing of ocean, ice and land surfaces using bistatically scattered GNSS signals from low Earth orbit , 2006 .

[29]  Norbert Jakowski,et al.  Ionospheric Propagation Effects on GNSS Signals and New Correction Approaches , 2012 .

[30]  Manuel Martín-Neira,et al.  The PARIS Ocean Altimeter In-Orbit Demonstrator , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Adriano Camps,et al.  Sea-State Determination Using GNSS-R Data , 2010, IEEE Geoscience and Remote Sensing Letters.

[32]  Manuel Martin-Neira,et al.  First spaceborne phase altimetry over sea ice using TechDemoSat‐1 GNSS‐R signals , 2017 .

[33]  Bo Sun,et al.  Bedmap2: improved ice bed, surface and thickness datasets for Antarctica , 2012 .