Physics based dynamic modeling of space-time data

Space-time data sets are increasingly becoming larger with more and more data being generated by radars, satellites, or highly resolved numerical models. It is therefore crucial that spatio-temporal models can deal with large data sets without running into a computational bottleneck. Statistical models in general and spatio-temporal models in particular need to have interpretable parametrizations that make a compromise between simplicity and generality. A physics based statistical approach uses knowledge from other areas of Science to build probabilistic models that meet these requirements. In the first part of this thesis, a dynamic model for short term prediction of precipitation is presented. The model is based on a physically motivated stochastic integro-difference equation (IDE) which allows for a non-separable correlation structure that is temporally non-stationary. External meteorological variables such as wind and humidity, amongst others, are combined with a non-parametric spatio-temporal process. Next, a model for large space-time data sets that is based on a stochastic partial differential equation (SPDE) is proposed. This approach has the advantage that the (hyper-)parameters of the process can be meaningfully interpreted, for instance, as being transport vectors and diffusion parameters. We show how to design computationally efficient algorithms by solving the SPDE in the spectral space and using the fast Fourier transform (FFT). Applying the model to postprocessing of precipitation forecasts from a numerical weather prediction (NWP)

[1]  Marco A. R. Ferreira,et al.  Spatiotemporal Models for Gaussian Areal Data , 2009 .

[2]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[3]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[4]  R. Haberman Elementary Applied Partial Differential Equations With Fourier Series and Boundary Value Problems , 1983 .

[5]  D. Nychka Spatial‐Process Estimates as Smoothers , 2012 .

[6]  Thomas L. Bell,et al.  A space‐time stochastic model of rainfall for satellite remote‐sensing studies , 1987 .

[7]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[8]  Jo Eidsvik,et al.  Estimation and Prediction in Spatial Models With Block Composite Likelihoods , 2014 .

[9]  B. Sansó,et al.  Extreme limit distribution of truncated models for daily rainfall , 2009 .

[10]  Jonathan R. Stroud,et al.  An Ensemble Kalman Filter and Smoother for Satellite Data Assimilation , 2010 .

[11]  J. Andrew Royle,et al.  Multiresolution models for nonstationary spatial covariance functions , 2002 .

[12]  Richard Bronson Linear Algebra: An Introduction , 1995 .

[13]  James P. Hughes,et al.  A spatiotemporal model for downscaling precipitation occurrence and amounts , 1999 .

[14]  Michael L. Stein,et al.  Uniform Asymptotic Optimality of Linear Predictions of a Random Field Using an Incorrect Second-Order Structure , 1990 .

[15]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[16]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[17]  J. Tobin Estimation of Relationships for Limited Dependent Variables , 1958 .

[18]  Kanti V. Mardia,et al.  On multimodality of the likelihood in the spatial linear model , 1989 .

[19]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[20]  R. L. Winkler,et al.  Scoring Rules for Continuous Probability Distributions , 1976 .

[21]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[22]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[23]  J. Andrew Royle,et al.  Efficient statistical mapping of avian count data , 2005, Environmental and Ecological Statistics.

[24]  George C. Craig,et al.  Blending a probabilistic nowcasting method with a high‐resolution numerical weather prediction ensemble for convective precipitation forecasts , 2012 .

[25]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[26]  Christopher K. Wikle,et al.  Hierarchical Bayesian Models for Predicting The Spread of Ecological Processes , 2003 .

[27]  M. Fuentes Approximate Likelihood for Large Irregularly Spaced Spatial Data , 2007, Journal of the American Statistical Association.

[28]  Thomas M. Hamill,et al.  Ensemble Reforecasting: Improving Medium-Range Forecast Skill Using Retrospective Forecasts , 2004 .

[29]  Adrian E. Raftery,et al.  Probabilistic quantitative precipitation field forecasting using a two-stage spatial model , 2008, 0901.3484.

[30]  Yanbing Zheng,et al.  Hierarchical dynamic modeling of outbreaks of mountain pine beetle using partial differential equations , 2010 .

[31]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[32]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[33]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[34]  Richard L. Pfeffer,et al.  Comparison of Methodologies for Probabilistic Quantitative Precipitation Forecasting , 2002 .

[35]  Christopher K. Wikle,et al.  Low-Rank Representations for Spatial Processes , 2010 .

[36]  Alan E. Gelfand,et al.  Modeling Space-Time Data Using Stochastic Differential Equations , 2009 .

[37]  Natasha Flyer,et al.  Interpolating fields of carbon monoxide data using a hybrid statistical-physical model , 2009, 0901.3670.

[38]  Ke Xu,et al.  A Kernel-Based Spatio-Temporal Dynamical Model for Nowcasting Weather Radar Reflectivities , 2005 .

[39]  Montserrat Fuentes,et al.  Spatial–temporal mesoscale modeling of rainfall intensity using gage and radar data , 2008, 0901.3478.

[40]  Anthony S. Bryk,et al.  Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .

[41]  A. Bárdossy,et al.  SPACE-TIME MODEL FOR DAILY RAINFALL USING ATMOSPHERIC CIRCULATION PATTERNS , 1992 .

[42]  M. Stein,et al.  A Bayesian analysis of kriging , 1993 .

[43]  Patrick Brown,et al.  Space–time calibration of radar rainfall data , 2001 .

[44]  Mark S Antolik,et al.  An overview of the National Weather Service's centralized statistical quantitative precipitation forecasts , 2000 .

[45]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[46]  George J. Haltiner,et al.  Numerical weather prediction , 1971 .

[47]  Brian D. Ripley,et al.  Problems with likelihood estimation of covariance functions of spatial Gaussian processes , 1987 .

[48]  D J Spiegelhalter,et al.  Approximate cross‐validatory predictive checks in disease mapping models , 2003, Statistics in medicine.

[49]  B. J. Mason Numerical weather prediction , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[50]  Eric M. Aldrich,et al.  Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center , 2006 .

[51]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[52]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[53]  Bruno Sansó,et al.  A Bayesian approach to compare observed rainfall data to deterministic simulations , 2004 .

[54]  David J. Stensrud,et al.  Prediction of Near-Surface Variables at Independent Locations from a Bias-Corrected Ensemble Forecasting System , 2006 .

[55]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[56]  A. Gelfand,et al.  Handbook of spatial statistics , 2010 .

[57]  harald Cramer,et al.  Stationary And Related Stochastic Processes , 1967 .

[58]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[59]  Derek J. Pike,et al.  Empirical Model‐building and Response Surfaces. , 1988 .

[60]  H. Rue,et al.  Fitting Gaussian Markov Random Fields to Gaussian Fields , 2002 .

[61]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[62]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[63]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[64]  Michael F. Hutchinson,et al.  Stochastic space-time weather models from ground-based data , 1995 .

[65]  W. Stahel,et al.  SPDE based modeling of large space-time data sets , 2014 .

[66]  B. Sansó,et al.  Venezuelan Rainfall Data Analysed by Using a Bayesian Space–time Model , 1999 .

[67]  Edward C. Waymire,et al.  A Spectral Theory of Rainfall Intensity at the Meso‐β Scale , 1984 .

[68]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[69]  Thomas M. Hamill,et al.  Verification of Eta–RSM Short-Range Ensemble Forecasts , 1997 .

[70]  M. Aitkin Posterior Bayes Factors , 1991 .

[71]  P. Guttorp,et al.  Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .

[72]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[73]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[74]  M. Stein Space–Time Covariance Functions , 2005 .

[75]  J. M. Sloughter,et al.  Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging , 2007 .

[76]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[77]  Coire J. Maranzano,et al.  Bayesian Processor of Output for Probabilistic Quantitative Precipitation Forecasting , 2006 .

[78]  Adrian E. Raftery,et al.  Weather Forecasting with Ensemble Methods , 2005, Science.

[79]  Alan E. Gelfand,et al.  Spatial process modelling for univariate and multivariate dynamic spatial data , 2005 .

[80]  P. Spreij Probability and Measure , 1996 .

[81]  L. Mark Berliner,et al.  Spatiotemporal Hierarchical Bayesian Modeling Tropical Ocean Surface Winds , 2001 .

[82]  P. Guttorp,et al.  A non‐homogeneous hidden Markov model for precipitation occurrence , 1999 .

[83]  C. F. Sirmans,et al.  Directional Rates of Change Under Spatial Process Models , 2003 .

[84]  Haotian Hang,et al.  Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[85]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[86]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[87]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[88]  A. Bárdossy,et al.  Multivariate stochastic downscaling model for generating daily precipitation series based on atmospheric circulation , 2002 .

[89]  Chris A. Glasbey,et al.  A latent Gaussian Markov random‐field model for spatiotemporal rainfall disaggregation , 2003 .

[90]  N. J. Ferreira,et al.  Artificial neural network technique for rainfall forecasting applied to the São Paulo region , 2005 .

[91]  P. Purdue,et al.  Stochastic Models for Precipitation , 1977 .

[92]  P. Friederichs,et al.  Statistical Downscaling of Extreme Precipitation Events Using Censored Quantile Regression , 2007 .

[93]  James P. Hughes,et al.  A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena , 1994 .

[94]  Richard H. Jones,et al.  Models for Continuous Stationary Space-Time Processes , 1997 .

[95]  J. Steppeler,et al.  Meso-gamma scale forecasts using the nonhydrostatic model LM , 2003 .

[96]  Bruno Sansó,et al.  A Nonstationary Multisite Model for Rainfall , 2000 .

[97]  David R. Cox,et al.  A simple spatial-temporal model of rainfall , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[98]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[99]  Gardar Johannesson,et al.  Dynamic multi-resolution spatial models , 2007, Environmental and Ecological Statistics.

[100]  S. Kotz,et al.  The Theory Of Stochastic Processes I , 1974 .

[101]  G. Roberts,et al.  OPTIMAL SCALING FOR PARTIALLY UPDATING MCMC ALGORITHMS , 2006, math/0607054.

[102]  Tilmann Gneiting,et al.  Geostatistical Model Averaging for Locally Calibrated Probabilistic Quantitative Precipitation Forecasting , 2011 .

[103]  Christopher J Paciorek,et al.  Spatial modelling using a new class of nonstationary covariance functions , 2006, Environmetrics.

[104]  L. M. Berliner,et al.  Hierarchical Bayesian space-time models , 1998, Environmental and Ecological Statistics.

[105]  D. Stensrud,et al.  Reliable Probabilistic Quantitative Precipitation Forecasts from a Short-Range Ensemble Forecasting System , 2007 .

[106]  Hans Kiinsch,et al.  State Space and Hidden Markov Models , 2000 .

[107]  A. Frigessi,et al.  Stationary space-time Gaussian fields and their time autoregressive representation , 2002 .

[108]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[109]  D. Nychka,et al.  Covariance Tapering for Interpolation of Large Spatial Datasets , 2006 .

[110]  Leon E. Borgman,et al.  Three-Dimensional, Frequency-Domain Simulations of Geological Variables , 1984 .

[111]  C. Wikle A kernel-based spectral model for non-Gaussian spatio-temporal processes , 2002 .

[112]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[113]  W. Stahel,et al.  Using The Censored Gamma Distribution for Modeling Fractional Response Variables with an Application to Loss Given Default , 2010, 1011.1796.

[114]  Chunsheng Ma,et al.  Families of spatio-temporal stationary covariance models , 2003 .

[115]  A. Gelfand,et al.  Bayesian Model Choice: Asymptotics and Exact Calculations , 1994 .

[116]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[117]  A. V. Vecchia Estimation and model identification for continuous spatial processes , 1988 .

[118]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[119]  Zhiyi Chi,et al.  Approximating likelihoods for large spatial data sets , 2004 .

[120]  H. Künsch,et al.  spate: an R Package for Statistical Modeling with SPDE Based Spatio-Temporal Gaussian Processes , 2013 .

[121]  John Bjørnar Bremnes,et al.  Probabilistic Forecasts of Precipitation in Terms of Quantiles Using NWP Model Output , 2004 .

[122]  C. K. Stidd Estimating the precipitation climate , 1973 .

[123]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[124]  Nan-Jung Hsu,et al.  Modeling transport effects on ground‐level ozone using a non‐stationary space–time model , 2004 .

[125]  D. J. Spiegelhalter,et al.  Identifying outliers in Bayesian hierarchical models: a simulation-based approach , 2007 .

[126]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[127]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[128]  V. Heine MODELS FOR TWO-DIMENSIONAL STATIONARY STOCHASTIC PROCESSES , 1955 .

[129]  Oleg Makhnin,et al.  Stochastic Precipitation Generation Based on a Multivariate Autoregression Model , 2009 .

[130]  G. Roberts,et al.  On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .

[131]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[132]  Lucien Le Cam,et al.  A Stochastic Description of Precipitation , 1961 .

[133]  H S Stern,et al.  Posterior predictive model checks for disease mapping models. , 2000, Statistics in medicine.

[134]  R. Gorenflo,et al.  Multi-index Mittag-Leffler Functions , 2014 .

[135]  R. Adler The Geometry of Random Fields , 2009 .

[136]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[137]  Stephen Wilkerson,et al.  Applied Partial Differential Equations with Fourier Series and Boundary Value Problems , 2012 .

[138]  Chris Kilsby,et al.  A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change , 2005 .

[139]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[140]  Knut Sølna,et al.  Time Trend Estimation for a Geographic Region , 1996 .

[141]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[142]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[143]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[144]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[145]  G. Folland Fourier analysis and its applications , 1992 .

[146]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[147]  Christopher J Paciorek,et al.  Bayesian Smoothing with Gaussian Processes Using Fourier Basis Functions in the spectralGP Package. , 2007, Journal of statistical software.

[148]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[149]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[150]  Tim N. Palmer,et al.  The economic value of ensemble forecasts as a tool for risk assessment: From days to decades , 2002 .

[151]  Y. Rozanov,et al.  Markov random fields , 1984 .

[152]  M. Hooten,et al.  A general science-based framework for dynamical spatio-temporal models , 2010 .

[153]  L. M. M.-T. Theory of Probability , 1929, Nature.

[154]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[155]  Pierre Ailliot,et al.  Space–time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions , 2009 .

[156]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[157]  M. J. Bayarri,et al.  P Values for Composite Null Models , 2000 .

[158]  Roger Stern,et al.  Fitting Models to Daily Rainfall Data , 1982 .

[159]  D. Wilks Multisite generalization of a daily stochastic precipitation generation model , 1998 .

[160]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[161]  Richard Coe,et al.  A Model Fitting Analysis of Daily Rainfall Data , 1984 .

[162]  P. Brown,et al.  Blur‐generated non‐separable space–time models , 2000 .

[163]  Fabio Sigrist,et al.  A dynamic nonstationary spatio-temporal model for short term prediction of precipitation , 2011, 1102.4210.

[164]  B. Øksendal Stochastic Differential Equations , 1985 .

[165]  Christopher K. Wikle,et al.  Estimation of Parameterized Spatio-Temporal Dynamic Models , 2007 .

[166]  Max A. Little,et al.  Generalized Linear Models for Site-Specific Density Forecasting of U.K. Daily Rainfall , 2009 .

[167]  Darren J. Wilkinson,et al.  Bayesian inference for nonlinear multivariate diffusion models observed with error , 2008, Comput. Stat. Data Anal..

[168]  James P. Hughes,et al.  A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts , 2000 .

[169]  P. Whittle,et al.  Topographic correlation, power-law covariance functions, and diffusion , 1962 .

[170]  Hong Chang,et al.  Model Determination Using Predictive Distributions with Implementation via Sampling-Based Methods , 1992 .

[171]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[172]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[173]  D. Wilks Multisite downscaling of daily precipitation with a stochastic weather generator , 1999 .

[174]  B. Sansó,et al.  A stochastic model for tropical rainfall at a single location , 1999 .

[175]  Michael L. Stein,et al.  A modeling approach for large spatial datasets , 2008 .

[176]  D. Wilks Maximum Likelihood Estimation for the Gamma Distribution Using Data Containing Zeros , 1990 .

[177]  Alan E. Gelfand,et al.  On smoothness properties of spatial processes , 2003 .

[178]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .