A Hybrid Heuristic for the p-Median Problem

Given n customers and a set F of m potential facilities, the p-median problem consists in finding a subset of F with p facilities such that the cost of serving all customers is minimized. This is a well-known NP-complete problem with important applications in location science and classification (clustering). We present a multistart hybrid heuristic that combines elements of several traditional metaheuristics to find near-optimal solutions to this problem. Empirical results on instances from the literature attest the robustness of the algorithm, which performs at least as well as other methods, and often better in terms of both running time and solution quality. In all cases the solutions obtained by our method were within 0.1% of the best known upper bounds.

[1]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[2]  Kenneth E. Rosing,et al.  An Empirical Investigation of the Effectiveness of a Vertex Substitution Heuristic , 1997 .

[3]  Pierre Hansen,et al.  Stabilized column generation , 1998, Discret. Math..

[4]  Fred Glover,et al.  Tabu Search and Adaptive Memory Programming — Advances, Applications and Challenges , 1997 .

[5]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[6]  Roberto D. Galvão,et al.  A Dual-Bounded Algorithm for the p-Median Problem , 1980, Oper. Res..

[7]  M. Rao Cluster Analysis and Mathematical Programming , 1971 .

[8]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[9]  Dominique Peeters,et al.  Location on networks , 1992 .

[10]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[11]  M. J. Hodgson Toward More Realistic Allocation in Location—Allocation Models: An Interaction Approach , 1978 .

[12]  F. E. Maranzana,et al.  On the Location of Supply Points to Minimize Transport Costs , 1964 .

[13]  Panos M. Pardalos,et al.  GRASP with Path Relinking for Three-Index Assignment , 2005, INFORMS J. Comput..

[14]  Belén Melián-Batista,et al.  Parallelization of the scatter search for the p-median problem , 2003, Parallel Comput..

[15]  Belén Melián-Batista,et al.  The Parallel Variable Neighborhood Search for the p-Median Problem , 2002, J. Heuristics.

[16]  Pierre Hansen,et al.  Variable Neighborhood Decomposition Search , 1998, J. Heuristics.

[17]  Hrishikesh D. Vinod Mathematica Integer Programming and the Theory of Grouping , 1969 .

[18]  Éric D. Taillard,et al.  Heuristic Methods for Large Centroid Clustering Problems , 2003, J. Heuristics.

[19]  Robert E. Markland,et al.  Theory and Application of an Optimizing Procedure for Lock Box Location Analysis , 1981 .

[20]  P. Hansen,et al.  Variable neighborhood search for the p-median , 1997 .

[21]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[22]  Alfred A. Kuehn,et al.  A Heuristic Program for Locating Warehouses , 1963 .

[23]  Panos M. Pardalos,et al.  GRASP With Path Relinking For The Three-Index Assignment Problem , 2000 .

[24]  Rafael Martí,et al.  GRASP and Path Relinking for 2-Layer Straight Line Crossing Minimization , 1999, INFORMS J. Comput..

[25]  Luiz Antonio Nogueira Lorena,et al.  Lagrangean/Surrogate Heuristics for p-Median Problems , 2000 .

[26]  G. Nemhauser,et al.  Exceptional Paper—Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms , 1977 .

[27]  Jack J. Dongarra,et al.  Performance of various computers using standard linear equations software in a FORTRAN environment , 1988, CARN.

[28]  J. Current,et al.  Heuristic concentration and Tabu search: A head to head comparison , 1998 .

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  K. E. Rosing,et al.  The p-Median and its Linear Programming Relaxation: An Approach to Large Problems , 1979 .

[31]  Polly Bart,et al.  Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph , 1968, Oper. Res..

[32]  R. A. Whitaker,et al.  A Fast Algorithm For The Greedy Interchange For Large-Scale Clustering And Median Location Problems , 1983 .

[33]  Celso C. Ribeiro,et al.  A Hybrid GRASP with Perturbations for the Steiner Problem in Graphs , 2002, INFORMS J. Comput..

[34]  J. Current,et al.  An efficient tabu search procedure for the p-Median Problem , 1997 .

[35]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[36]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[37]  Francesco E. Maranzana,et al.  On the Location of Supply Points to Minimize Transportation Costs , 1963, IBM Syst. J..

[38]  C. Revelle,et al.  Heuristic concentration: Two stage solution construction , 1997 .

[39]  Pierre Hansen,et al.  Variable Neighbourhood Search , 2003 .

[40]  Mauricio G. C. Resende,et al.  On the implementation of a swap-based local search procedure for the p -median problem ∗ , 2002 .

[41]  Timothy J. Lowe,et al.  Location on Networks: A Survey. Part I: The p-Center and p-Median Problems , 1983 .

[42]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[43]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[44]  Mikkel Thorup Quick k-Median, k-Center, and Facility Location for Sparse Graphs , 2001, ICALP.

[45]  J. Beasley A note on solving large p-median problems , 1985 .

[46]  L. A. Lorena,et al.  Stabilizing column generation using Lagrangean/surrogate relaxation: an application to p-median location problems , 2003 .

[47]  C. Revelle,et al.  A Lagrangean heuristic for the maximal covering location problem , 1996 .