Title Pushing the limits in marine species distribution modelling : Lessons from the land present challenges and opportunities

[1]  Steven J. Phillips,et al.  The art of modelling range‐shifting species , 2010 .

[2]  Patrick Lehodey,et al.  CLimate Impacts on Oceanic TOp Predators (CLIOTOP): Introduction to the Special Issue of the CLIOTOP International Symposium, La Paz, Mexico, 3-7 December 2007 , 2010 .

[3]  Hannah M Murphy,et al.  Observational methods used in marine spatial monitoring of fishes and associated habitats: a review , 2010 .

[4]  L. Stadler,et al.  Integrating species distribution models and interacting particle systems to predict the spread of an invasive alien plant , 2010 .

[5]  Rainer Froese,et al.  Predicting the distributions of marine organisms at the global scale , 2010 .

[6]  Tim Newbold,et al.  Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models , 2010 .

[7]  P. Hammond,et al.  Using habitat models to identify suitable sites for marine protected areas for harbour porpoises (Phocoena phocoena) , 2010 .

[8]  C. Hui,et al.  Measures, perceptions and scaling patterns of aggregated species distributions , 2010 .

[9]  J. Elith,et al.  Assessing the impacts of climate change and land transformation on Banksia in the South West Australian Floristic Region , 2010 .

[10]  Lauren B. Buckley,et al.  Toward linking ocean models to fish population dynamics , 2010 .

[11]  Olivier Maury,et al.  An overview of APECOSM, a spatialized mass balanced “Apex Predators ECOSystem Model” to study physiologically structured tuna population dynamics in their ecosystem , 2010 .

[12]  Cang Hui,et al.  On the scaling patterns of species spatial distribution and association. , 2009, Journal of theoretical biology.

[13]  Wolfgang Nentwig,et al.  Alien species in a warmer world: risks and opportunities. , 2009, Trends in ecology & evolution.

[14]  D. Purves,et al.  Do Species Distribution Models explain spatial structure within tree species ranges , 2009 .

[15]  S. Beissinger,et al.  Detecting range shifts from historical species occurrences: new perspectives on old data. , 2009, Trends in ecology & evolution.

[16]  S. Navarrete,et al.  Ontogenetic changes in habitat use and diet of the sea-star Heliaster helianthus on the coast of central Chile , 2009, Journal of the Marine Biological Association of the United Kingdom.

[17]  J. Kerr,et al.  Historically calibrated predictions of butterfly species' range shift using global change as a pseudo-experiment. , 2009, Ecology.

[18]  Christopher N. Johnson,et al.  Separating the influences of environment and species interactions on patterns of distribution and abundance: competition between large herbivores. , 2009, The Journal of animal ecology.

[19]  W. Thuiller,et al.  Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. , 2009, Ecology.

[20]  W. Figueira Connectivity or demography: Defining sources and sinks in coral reef fish metapopulations , 2009 .

[21]  M. Kearney,et al.  Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. , 2009, Ecology letters.

[22]  Stuart I. Rogers,et al.  Modelling the spatial distribution of plaice (Pleuronectes platessa), sole (Solea solea) and thornback ray (Raja clavata) in UK waters for marine management and planning , 2009 .

[23]  Paul M. Thompson,et al.  Using marine mammal habitat modelling to identify priority conservation zones within a marine protected area , 2009 .

[24]  C. Graham,et al.  Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? , 2009 .

[25]  J. Elith,et al.  Species Distribution Models: Ecological Explanation and Prediction Across Space and Time , 2009 .

[26]  W. Thuiller,et al.  From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle , 2009 .

[27]  Steven J. Phillips,et al.  Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. , 2009, Ecological applications : a publication of the Ecological Society of America.

[28]  Alberto Jiménez-Valverde,et al.  Not as good as they seem: the importance of concepts in species distribution modelling , 2008 .

[29]  S. Hawkins,et al.  MODELING THE RESPONSE OF POPULATIONS OF COMPETING SPECIES TO CLIMATE CHANGE. , 2008, Ecology.

[30]  Priyanga Amarasekare,et al.  Spatial Dynamics of Foodwebs , 2008 .

[31]  Wilfried Thuiller,et al.  Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models , 2008, Biology Letters.

[32]  P. Halpin,et al.  Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity? , 2008, Ecological applications : a publication of the Ecological Society of America.

[33]  K. Kovacs,et al.  Predicting habitat use by ringed seals (Phoca hispida) in a warming Arctic , 2008 .

[34]  D. Maitre,et al.  Developing an approach to defining the potential distributions of invasive plant species: a case study of Hakea species in South Africa , 2008 .

[35]  Patrick Lehodey,et al.  A spatial ecosystem and populations dynamics model (SEAPODYM) – Modeling of tuna and tuna-like populations , 2008 .

[36]  D. Pauly,et al.  Marine Ecology Progress Series Mar Ecol Prog Ser , 2022 .

[37]  F. Mélin,et al.  Modelling Habitat Preferences for Fin Whales and Striped Dolphins in the Pelagos Sanctuary (Western Mediterranean Sea) with Physiographic and Remote Sensing Variables , 2008 .

[38]  G. Pierce,et al.  Modelling of essential fish habitat based on remote sensing, spatial analysis and GIS , 2008, Hydrobiologia.

[39]  L. Herborg,et al.  A qualitative biological risk assessment for vase tunicate Ciona intestinalis in Canadian waters: using expert knowledge , 2008 .

[40]  A. Richardson,et al.  Under-Resourced, Under Threat , 2008, Science.

[41]  J. Olden,et al.  Integrated Monitoring and Information Systems for Managing Aquatic Invasive Species in a Changing Climate , 2008, Conservation biology : the journal of the Society for Conservation Biology.

[42]  Trevor Hastie,et al.  Novel methods for the design and evaluation of marine protected areas in offshore waters , 2008 .

[43]  Chris J. Johnson,et al.  Sensitivity of species-distribution models to error, bias, and model design: An application to resource selection functions for woodland caribou , 2008 .

[44]  Steven J. Phillips Transferability, sample selection bias and background data in presence‐only modelling: a response to Peterson et al. (2007) , 2008 .

[45]  Joaquín Hortal,et al.  Climate Change, Humans, and the Extinction of the Woolly Mammoth , 2008, PLoS biology.

[46]  Antoine Guisan,et al.  Niche dynamics in space and time. , 2008, Trends in ecology & evolution.

[47]  N. Polunin,et al.  Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. , 2008, The Journal of animal ecology.

[48]  S. Gaines,et al.  Scales of Dispersal and the Biogeography of Marine Predator‐Prey Interactions , 2008, The American Naturalist.

[49]  John O Dabiri,et al.  An overview of a Lagrangian method for analysis of animal wake dynamics , 2008, Journal of Experimental Biology.

[50]  A. Hahs,et al.  A dispersal-constrained habitat suitability model for predicting invasion of alpine vegetation. , 2008, Ecological applications : a publication of the Ecological Society of America.

[51]  M. Luoto,et al.  Biotic interactions improve prediction of boreal bird distributions at macro‐scales , 2007 .

[52]  M. Araújo,et al.  The importance of biotic interactions for modelling species distributions under climate change , 2007 .

[53]  R. G. Davies,et al.  Methods to account for spatial autocorrelation in the analysis of species distributional data : a review , 2007 .

[54]  N. Queiroz,et al.  Modelling past and present geographical distribution of the marine gastropod Patella rustica as a tool for exploring responses to environmental change , 2007 .

[55]  Liana N. Joseph,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Evolutionary Blockinresponses Blockinto Blockinclimate Blockinchange , 2022 .

[56]  L. Gerber,et al.  Connecting places: The ecological consequences of dispersal in the sea , 2007 .

[57]  Frank M. Schurr,et al.  Colonization and persistence ability explain the extent to which plant species fill their potential range , 2007 .

[58]  L. Dill,et al.  Can measures of prey availability improve our ability to predict the abundance of large marine predators? , 2007, Oecologia.

[59]  Francisco E. Werner,et al.  A bioenergetics-based population dynamics model of Pacific herring (Clupea harengus pallasi) coupled to a lower trophic level nutrient-phytoplankton-zooplankton model: Description, calibration, and sensitivity analysis , 2007 .

[60]  H. Tuomisto,et al.  Environmental and neighbourhood effects on tree fern distributions in a neotropical lowland rain forest , 2007 .

[61]  J. Svenning,et al.  Range filling in European trees , 2006 .

[62]  M. Zappa,et al.  Are niche‐based species distribution models transferable in space? , 2006 .

[63]  F. Huettmann,et al.  Large-scale effects on the spatial distribution of seabirds in the Northwest Atlantic , 2006, Landscape Ecology.

[64]  R. Pearson,et al.  Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar , 2006 .

[65]  D. Pauly,et al.  Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model , 2006 .

[66]  C. Heip,et al.  Biodiversity Research Still Grounded , 2006, Science.

[67]  Trevor Hastie,et al.  Making better biogeographical predictions of species’ distributions , 2006 .

[68]  G. Midgley,et al.  Do geographic distribution, niche property and life form explain plants' vulnerability to global change? , 2006 .

[69]  Patrick N. Halpin,et al.  Techniques for cetacean-habitat modeling , 2006 .

[70]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[71]  Brendan A. Wintle,et al.  Utility of Dynamic‐Landscape Metapopulation Models for Sustainable Forest Management , 2005 .

[72]  M. Araújo,et al.  Equilibrium of species’ distributions with climate , 2005 .

[73]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[74]  Marie-Josée Fortin,et al.  Species' geographic ranges and distributional limits: pattern analysis and statistical issues , 2005 .

[75]  W. Thuiller Patterns and uncertainties of species' range shifts under climate change , 2004 .

[76]  B. Halpern,et al.  Habitat Size, Recruitment, and Longevity as Factors Limiting Population Size in Stage‐Structured Species , 2004, The American Naturalist.

[77]  James C. Russell,et al.  Modelling the distribution and interaction of introduced rodents on New Zealand offshore islands , 2004 .

[78]  M. Kearney,et al.  MAPPING THE FUNDAMENTAL NICHE: PHYSIOLOGY, CLIMATE, AND THE DISTRIBUTION OF A NOCTURNAL LIZARD , 2004 .

[79]  A. Bellgrove,et al.  An integrated study of the temporal and spatial variation in the supply of propagules, recruitment and assemblages of intertidal macroalgae on a wave-exposed rocky coast, Victoria, Australia , 2004 .

[80]  Á. Felicísimo,et al.  Wind as a Long-Distance Dispersal Vehicle in the Southern Hemisphere , 2004, Science.

[81]  U. Niermann,et al.  Is the comb jelly really to blame for it all? Mnemiopsis leidyi and the ecological concerns about the Caspian Sea , 2004 .

[82]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[83]  H.,et al.  LARVAL FISH ASSEMBLAGES AND OCEANIC BOUNDARIES , 2004 .

[84]  F. Palomares,et al.  IDENTIFYING BREEDING HABITAT FOR THE IBERIAN LYNX: INFERENCES FROM A FINE‐SCALE SPATIAL ANALYSIS , 2003 .

[85]  T. Dawson,et al.  Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? , 2003 .

[86]  Steven D. Gaines,et al.  PROPAGULE DISPERSAL IN MARINE AND TERRESTRIAL ENVIRONMENTS: A COMMUNITY PERSPECTIVE , 2003 .

[87]  Patricia E. Rosel,et al.  IMPROVING MANAGEMENT OF OVERLAPPING BOTTLENOSE DOLPHIN ECOTYPES THROUGH SPATIAL ANALYSIS AND GENETICS , 2003 .

[88]  J. G. Hiddink,et al.  Modelling the adaptive value of intertidal migration and nursery use in the bivalve Macoma balthica , 2003 .

[89]  S. Andelman,et al.  COMPARING MARINE AND TERRESTRIAL ECOSYSTEMS: IMPLICATIONS FOR THE DESIGN OF COASTAL MARINE RESERVES , 2003 .

[90]  M. Austin Spatial prediction of species distribution: an interface between ecological theory and statistical modelling , 2002 .

[91]  S. Levin,et al.  Mechanisms of long-distance dispersal of seeds by wind , 2002, Nature.

[92]  Robert P. Anderson,et al.  Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice , 2002 .

[93]  Christian Mullon,et al.  Evolutionary individual-based model for the recruitment of anchovy (Engraulis capensis) in the southern Benguela , 2002 .

[94]  J. Elith,et al.  Predictions and their validation: Rare plants in the Central Highlands, Victoria, Australia , 2002 .

[95]  J. Leathwick,et al.  COMPETITIVE INTERACTIONS BETWEEN TREE SPECIES IN NEW ZEALAND'S OLD‐GROWTH INDIGENOUS FORESTS , 2001 .

[96]  Paul E. Smith,et al.  Mesoscale eddies and survival of late stage Pacific sardine (Sardinops sagax) larvae , 2001 .

[97]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[98]  D. Eggleston,et al.  ECOLOGICAL PROCESSES UNDERLYING ONTOGENETIC HABITAT SHIFTS IN A CORAL REEF FISH , 2000 .

[99]  H. Pulliam On the relationship between niche and distribution , 2000 .

[100]  Campbell O. Webb,et al.  Habitat associations of trees and seedlings in a Bornean rain forest , 2000 .

[101]  M. Boyce,et al.  Relating populations to habitats using resource selection functions. , 1999, Trends in ecology & evolution.

[102]  A. Longhurst Ecological Geography of the Sea , 1998 .

[103]  B. Helmuth INTERTIDAL MUSSEL MICROCLIMATES: PREDICTING THE BODY TEMPERATURE OF A SESSILE INVERTEBRATE , 1998 .

[104]  N. B. Hargreaves,et al.  The distribution of sea birds relative to their fish prey off Vancouver Island: opposing results at large and small spatial scales , 1996 .

[105]  M. Beck Size-specific shelter limitation in stone crabs : a test of the demographic bottleneck hypothesis , 1995 .

[106]  S. Levin Patchiness in marine and terrestrial systems: from individuals to populations , 1994 .

[107]  D. Ritz Social Aggregation in Pelagic Invertebrates , 1994 .

[108]  John H. Steele,et al.  Can ecological theory cross the land-sea boundary? , 1991 .

[109]  G. Evelynhutchinson,et al.  Population studies: Animal ecology and demography , 1991 .

[110]  J. Connell The Influence of Interspecific Competition and Other Factors on the Distribution of the Barnacle Chthamalus Stellatus , 1961 .

[111]  G. F. Gause,et al.  EXPERIMENTAL ANALYSIS OF VITO VOLTERRA'S MATHEMATICAL THEORY OF THE STRUGGLE FOR EXISTENCE. , 1934, Science.

[112]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926, Nature.

[113]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[114]  J. Grinnell,et al.  The Origin and Distribution of the Chest-Nut-Backed Chickadee , 1904 .